

Principals

Steven A. Fangmann, P.E., BCEE President & Chairman William D. Merklin, P.E. Executive Vice President Robert L. Raab, P.E., BCEE, CCM Senior Vice President Joseph H. Marturano Senior Vice President

January 4, 2024

Liberty Utilities (New York Water) Corporation – Merrick Operations District PWS ID No. NY2902840 MCL Deferral/Exemption for 1,4-Dioxane Quarterly Report – Fourth Quarter 2023

Introduction

On behalf of Liberty Utilities (New York Water) Corporation (Liberty), D&B Engineers and Architects (D&B) has prepared this document in accordance with the requirements of the New York State Department of Health (NYSDOH) for public water suppliers who have been granted a deferral from maximum contaminant level (MCL) violations for 1,4-Dioxane. Liberty's Merrick Operations District was granted an MCL deferral for 1,4-Dioxane in 2020 due to its proactive efforts toward the implementation of treatment for this compound.

The last three years have been a time of unprecedented disruption in the supply chain of chemical supplies, equipment, infrastructure components, pipe, and materials (e.g., steel), and treatment systems. Contractors and water suppliers, locally and nationwide, have been impacted by these issues in completing both small-scale and large-scale projects. Shortages of necessary items have significantly impacted Liberty, primarily in terms of price increases, decreased availability, and longer lead times. In addition, due to the rapidly changing regulatory environment through an expanded list of contaminants with lower regulatory advisory levels or MCLs, local and state regulators are experiencing a large number of capital project submissions, in addition to their regular workload. This increased workload has led to longer regulatory review times of engineering reports, detailed design plans, and specifications. In many cases, these factors, which are out of Liberty's control, have caused delays in obtaining final regulatory approval, commencing construction, procuring equipment and necessary components, and conforming to construction schedules proposed prior to the onset of pandemic impacts.

Liberty has done everything within its power to adhere to the project schedule approved in the original deferral request, as described in the previous quarterly deferral reports. The full impact of delays was not known at the time of the original compliance deferrals and due to these regulatory changes, these delays were expected to become worse before improving because of increased national demand. Recognizing these exceptional circumstances, Liberty requested and received a 12-month MCL exemption which extended the MCL compliance deadline to August 25, 2024. This exemption was granted under Part 5-1.92 of the New York State Sanitary Code. The intent of the exemption is to extend the compliance deadline an additional year to reflect the hardship that these delays have had upon the project completion schedule.

Liberty's goal, as always, is to provide an adequate supply of potable water to its consumers and it has done everything in its ability to move forward on the treatment project to further that goal and meet consumer demands. These impacts of the last three years are expected to continue for the foreseeable future and will most likely affect the ability of Liberty to conform to the project schedule outlined in the original deferral request, even with the deferral renewal. In particular, the supply chain difficulties have impacted all facets of construction. The most notable delays are related to motor starters, transfer switches, emergency

D&B Engineers and Architects

Liberty Utilities (New York Water) Corporation – Merrick Operations District PWS ID No. NY2902840 MCL Deferral/Exemption for 1,4-Dioxane Quarterly Report – Fourth Quarter 2023

generators, and controls equipment which now require more than a year to accomplish submittal approvals, fabrication, and delivery to a project site. In some cases, the delivery date for this critical equipment is still unknown as the contractors and equipment vendors are experiencing labor shortages and cannot predict material availability.

The enclosed is a report describing Liberty's progress towards maintaining the highest quality of water for the customers in the Merrick Operations District, and meeting the deadlines set forth in the deferral approval. The schedule for the project is contained in **Attachment A**.

Corrective Action Plan Milestones

Advanced Oxidation Process (AOP) Treatment System for Seamans Neck Road Wells 3A and 4

As indicated in the previous report, construction commenced in the first quarter of 2023 and it is anticipated that the advanced oxidation process (AOP) treatment system construction will be complete and will be placed into service in the third quarter of 2024. The Iron Removal Facility (IRF) improvements project, currently on-going at the site, which is required for efficient AOP treatment operation, is in construction and iron media replacement has been completed and approved by the Nassau County Department of Health for placement into service. Miscellaneous other improvements at the site are on-going. Substantial completion of the project is anticipated to be in the first quarter of 2024 with start-up and testing being completed in the third quarter of 2024 before the station is placed into service.

Public Notification

Public notification regarding the presence and regulation of emerging compounds, as well as the deferral, was included in the former New York American Water (NYAW) 2020 Annual Water Quality Report (AWQR)/Consumer Confidence Report released in May 2021, posted on the former NYAW website at <u>libertyutilities.com</u> and publicized via newspaper ads and bill insert. The most recent 2022 AWQR specific to the Merrick Operations District provides public notification of the deferral as well and is available at <u>https://new-york-water.libertyutilities.com/uploads/Merrick_CCR.pdf</u>.

In addition, Liberty has uploaded this quarterly report to its website at <u>https://new-york-water.libertyutilities.com/all/residential/safety/seamans-neck-public-notification.html</u>.

Documentation of the recent deferral exemption public notification is contained in Attachment B.

Analytical Sampling

Sample results for the wells for which a deferral was granted (Seamans Neck Wells 3A and 4 and Jefferson Street Well 11), taken during the fourth quarter of 2023, are contained in the table below. The 1,4-Dioxane levels for the Jefferson Street Well 11 in the first quarter of 2022 were 0.023 micrograms per Liter (ug/L) and, in the second quarter of 2022 through fourth quarter of 2023, were non-detectable levels. The historical sampling at Jefferson Street Well 11 shows consistent 1,4-Dioxane results below the MCL. Full laboratory reports for each sample are contained in **Attachment C**.

Liberty Utilities (New York Water) Corporation – Merrick Operations District PWS ID No. NY2902840 MCL Deferral/Exemption for 1,4-Dioxane Quarterly Report – Fourth Quarter 2023

Merrick Ops District (PWS No. NY2902840)						
Location	Well ID No.	Date Sampled	Lab Utilized	1,4-Dioxane (ug/L)		
Jefferson Street Well 11	N-07407	10/04/2023	Pace	ND		
Seamans Neck Wells 3A and 4 GAC	GAC for N-14347 and N-09338	10/19/2023	Pace	2.3		
Seamans Neck Well 4	N-09338	10/19/2023	Pace	2.0		
Seamans Neck Well 3A	N-14347	10/24/2023	Pace	2.3		

Fourth Quarter 2023 1,4-Dioxane Water Quality Monitoring Results

ND - Not Detected

Conclusion

As demonstrated above, Liberty is actively working to preserve the quality of water for its customers and comply with the requirements put forth by the NYSDOH. Liberty looks forward to continuing to work towards completion of its treatment facilities for the Merrick Operations District.

Should you have any questions, please contact the undersigned at (516) 364-9890, Ext. 3401, or visit the website at <u>https://libertyutilities.com/</u>.

Very truly yours,

ALLSL

Philip Sachs, P.E. Vice President

PRS/LOt/kb Enclosures cc: K. Wheeler (NYSDOH) B. Rogers (NYSDOH) W. Provoncha (NCDH) P. Young (NCDH) R. Putnam (NCDH) D. Franco (Liberty) J. Kilpatrick (Liberty) G. Sachs (Liberty) P. Connell (D&B) L. Ortiz (D&B) •5479\KK12192302_Q4 2023(R01)

ATTACHMENT A

Project Schedule Associated with MCL Deferral/Exemption

Liberty New York Water Merrick Operations District	Seamans Neck Road Wells 3A and 4
MCL Deferral/Exemption Report - Q4 2023	AOP Project Schedule
Fask Name	2022 2023 2024 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 2 Qtr 3 Qtr 4 Qtr 4<
Pilot Test (Complete)	
Basis of Design Report (BODR) (Complete)	
Regulatory Review of BODR (Complete)	
Detailed Design (Complete)	
Regulatory Review of Contract Documents (Complete)	
Town Zoning Process (Complete)	
Bidding (Complete) and Construction (In Progress)	
Startup and Regulatory Acceptance Testing	

ATTACHMENT B

Public Notification Documentation

2020 WATER QUALITY REPORT

Service Area 2–South Shore: Merrick Operations District

Public Water Supply ID# NY2902840

This report complies with Part 5-1.72, New York State Sanitary Code (10 NYCCR) and federal Consumer Confidence Report regulations (40 CFR Part 141, Subpart 0).

Este informe contiene información muy importante sobre su agua beber. Tradúzcalo ó hable con alguien que lo entienda bien.

本报告与您的饮用水有关。 如果您不了解其内容,应请别人为您翻译解说。

이 보고서에는 귀하께서 사용하고 계시는 식수에 관한 정보가 들어있습니다. 만약에 이해를 못하시면 누군가에게 번역을 의뢰하십시오.

A Message from the New York American Water President

To Our Valued Customer:

Thank you for the opportunity to serve you. I am pleased to share our **Annual Water Quality Report** with you – this is our report card on the quality of the drinking water delivered to our customers. The report shows that we continue to supply you with water that

meets or surpasses all county, state, and federal water quality standards. We encourage our customers to review this report as it provides important details about the source and quality of your drinking water between January and December 2020.

New York American Water (NYAW) invests in our infrastructure to deliver quality drinking water to our customers. This includes the facilities and technology needed to draw water from the source and treat it, along with miles and miles of pipeline hidden below the ground to bring water to your tap. In addition, our plant operators, water quality experts, engineers and maintenance crews work around the clock to provide you with quality water. Delivering safe, reliable water service requires significant investment to maintain and upgrade aging facilities. In 2020, we invested approximately \$62 million in system improvements. NYAW is also making important investments in water treatment technology to comply with New York State Department of Health's (NYSDOH) new drinking water standards for emerging compounds, specifically 1,4-Dioxane, PFOA, and PFOS.

NEW YORK MERICAN WATER

The COVID-19 public health emergency highlighted how essential water is for public health. We remain steadfast in our commitment to delivering safe and reliable water service while maintaining a safe environment for our employees and customers. NYAW extends our sincerest gratitude to our field employees as well as all frontline workers and essential employees who are on the job and keeping life flowing. Thank you!

Sincerely,

Lynda DiMenna President, New York American Water

Public Participation – How You Can Get Involved

Customers can participate in decisions that may affect the quality of water by:

- Reading the information provided in bill inserts and special mailings
- Contacting the company directly with questions or to discuss issues
- Attending open houses conducted by the company
- Responding to survey requests
- Attending presentations by the company made to local community and civic associations
- Contacting agencies such as the Nassau County Health Department (NCDOH) at 516-227-9692

QUALITY. ONE MORE WAY WE KEEP LIFE FLOWING.

Be Water Smart – Think Conservation

The New York State Department of Environmental Conservation requested that all Long Island water suppliers reduce their peak pumpage by 15 percent to protect the long-term sustainability of the Long Island aquifer. Our customers must conserve water to help us achieve this goal. When our customers conserve, not only do they reduce their water bill, but NYAW is able to defer infrastructure investment projects that are needed to meet peak water demand, which can reach as high as 50 million gallons of water a day in the summer.

The following suggestions will help you make your home "water efficient" without sacrificing comfort or changing lifestyles:

- Install smart irrigation technology on your irrigation system to irrigate as efficiently as possible.
- Install a moisture sensor on your irrigation system to prevent wasteful watering during or just after a rain.
- Use native, drought-resistant shrubs, trees, plants, and • grasses in your landscape.
- Run dishwashers and washing machines only with full • loads.
- Turn off the tap when brushing your teeth or shaving. •
- Check every faucet for leaks. Even a slow drip can . waste 15 to 20 gallons a day, or about 6,000 gallons a year.
- If you suspect that you have a water leak, order our • free Leak Detection Kit. The kit contains information, and dye tablets to help you determine if you have a wasteful water loss. Call our customer call center or 516-632-2244 to order.
- Replace older devices with water-saving showerheads, . faucets, or low flush toilets. A normal showerhead uses 5 to 7 gallons a minute. Switching to a low-flow model that uses 1.5 gallons a minute can save a family thousands of gallons of water a year.

What is a Water Quality Report?

To assure that water is safe to drink, the U.S. Environmental Protection Agency (USEPA), and the Health Departments of New York State and Nassau County, set regulations for water quality and indicate the levels of various substances that are acceptable in public drinking water. This report explains how our water measures up to those standards. As you can see by the results, our water quality is excellent.

The NYSDOH) and the U.S. Food & Drug Administration regulate and set limits for substances in bottled water, which must also provide protection for public health.

During 2020, our system was in compliance with applicable NYS drinking water operating, monitoring and reporting requirements. If you have questions about this report, please contact our Water Quality Manager at 516-632-2239.

Share This Report:

Landlords, businesses, schools, hospitals, and others are encouraged to share this important water quality information with water users at their location who are not direct customers of NYAW. Additional copies of this report are available by contacting us at 516-632-2239.

How to Contact Us

Thank you for allowing us to continue to provide your family with quality drinking water this year. We ask that all our customers protect our water sources, which are the heart of our community. Please call our Customer Call Center tollfree if you have questions:

NYAW:

Customer Call Center: 1-877-426-6999 (M-F; 7am-7pm) Emergencies: 1-877-426-6909 (24 hours) TDD (Hearing/Speech impaired): 1-800-300-6202 Online: www.newyorkamwater.com

Merrick Administrative Office:

New York American Water 60 Brooklyn Avenue, Merrick, NY 11566 516-632-2232

Billing Payment Address:

New York American Water PO BOX 371332 Pittsburgh, PA 15250-7332

Water Information Sources : NYSDOH

1-518-473-8600 • www.health.state.ny.us NCDOH 516-227-9692 • www.co.nassau.ny.us/health New York State Department of Public Service 1-800-342-3377 • www.dps.state.ny.us USEPA www.epa.gov/safewater

EPA Safe Drinking Water Hotline 1-800-426-4791 American Water Works Association www.awwa.org Water Quality Association www.wga.org

About NYAW

NYAW, a subsidiary of American Water (NYSE: AWK), is the largest investor-owned water company in New York, providing high-quality and reliable water and/or wastewater services to approximately 350,000 people.

About American Water

With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 6,800 dedicated professionals who provide regulated and market-based drinking water,

WE CARE ABOUT WATER. IT'S WHAT WE DO.®

wastewater, and other related services to more than 14 million people in 46 states. American Water provides safe, clean, affordable, and reliable water services to our customers to make sure we keep their lives flowing. For more information, visit <u>amwater.com</u> and follow American Water on <u>Twitter</u>, <u>Facebook</u> and <u>LinkedIn</u>.

Communities Served

Bellmore East Massapequa* Levittown* Massapequa* Merrick North Bellmore North Merrick North Merrick North Seaford North Wantagh Seaford Wantagh *community partially served

Average Residential Usage & Cost

In 2020, the average residential household used approximately 105,353 gallons of water at a cost of about \$646, or \$1.77 a day. With an average of 3.0 persons per household, the cost of water was about 59¢ a day per person.

Source, Quality & Quantity

Groundwater is the source of your drinking water supply. It is drawn from 16 wells located in the aquifer system beneath the land surface.

The Aquifers

The aquifers are water-bearing geologic deposits of sand and clay that absorb and store about 45 percent of the rain and snow that fall on Long Island. NYAW– Merrick Operations Center has wells in the Magothy aquifer.

Not all wells are operating at the same time, which means that the water you receive is a blend of treated water from different well locations (an integrated system).

Not to scale

If you have a private well which is unregulated and untested, you should not use the water for drinking or cooking. (Source: NCDOH)

Source Water Assessment

The NYSDOH, with assistance from the local health department and a consulting firm, has completed a source water assessment for this system, based on available information. Possible and actual threats to this drinking water source were evaluated. The source water assessment includes a susceptibility rating based on the risk posed by each potential source of contamination and how rapidly contaminants can move through the subsurface to the wells. The susceptibility of a water supply well to contamination is dependent upon both the presence of potential sources of contamination within the well's contributing area and the likelihood that the contaminant can travel through the environment to reach the well. The susceptibility rating is an estimate of the potential for contamination of the source water, it does not mean that the water delivered to consumers is or will become contaminated. See section "Are there contaminants in our drinking water?" for a list of the contaminants that have been detected (if any). The source water assessments provide resource managers with additional information for protecting source waters into the future.

Drinking water is derived from 16 wells. The source water assessment has rated most of the wells as having a very high susceptibility to industrial solvents and a high susceptibility to nitrates. The elevated susceptibility to industrial solvents is due primarily to point sources of contamination related to transportation routes and commercial/ industrial facilities and related activities in the assessment area. The high susceptibility to nitrate contamination is attributable to residential, commercial, and institutional land use and related practices in the assessment area, such as fertilizing lawns.

A copy of the assessment, including a map of the assessment area, can be obtained by contacting our Water Quality Manager at 516-632-2239.

How is Your Water Treated?

Our water supply is obtained from wells located throughout our service area, and average about 500 feet in depth. In our area of southeastern Nassau County, the soil has naturally high iron and mineral content. The water dissolves these naturally occurring minerals, and while they are not health hazards, they can cause discolored water issues. Bacteriological pollutants are not usually present in wells at the average depth of 500 feet and, consequently, water directly from the well is drinkable. However, water treatment is required to protect the water in the distribution system and to minimize discolored water conditions.

Treatment consists of:

1. Chlorination for bacteriological disinfection (using Sodium Hypochlorite)

- 2. Caustic Soda (Sodium Hydroxide) to raise pH and minimize corrosivity to water mains and household plumbing
- 3. Filtration to remove iron at three well locations
- 4. Calciquest (Phosphate compound) to stabilize or sequester the iron not removed by filtration, and to act as a corrosion control inhibitor.
- 5. Granular Activated Carbon (GAC) to remove organics at one well location (US Navy / Northrop-Grumman plume site).

We take steps to reduce the potential for lead to leach from your pipes into the water. This is accomplished by adding a corrosion inhibitor (Calciquest is an Orthophosphate compound) to the water leaving our treatment facilities. There are steps that you can take to reduce your household's exposure to lead in drinking water. For more information, please review our Lead and Drinking Water Fact Sheet at:

www.nyamwater.com/water-quality/lead-and-drinkingwater

System Improvements

In 2020, we continued to make significant upgrades to our system and infrastructure. These improvements include:

- Replaced 14,893 feet of water main throughout the service territory.
- Replaced 10 fire hydrants.
- Replaced 114 service lines.
- Replaced 8,014 water meters.
- Completed replacement of the iron filtration media and drilled a new 3 Million-Gallon-Per-Day water supply well at the Newbridge Road Treatment Plant in North Bellmore.
- Drilled a new 3 Million-Gallon-Per-Day water supply well at the Jefferson Plant in Merrick.
- Completed design of a 6 Million-Gallon-Per-Day Advanced Oxidation Plant for removal of 1,4-Dioxane at the Seaman's Neck Treatment Plant in Wantagh.

Improvements planned for 2021 include:

- Replace approximately 14,700 feet of water main.
- Replace 5 fire hydrants.
- Replace 120 service lines.
- Replace approximately 1,500 water meters.
- Construct new well buildings at the Jefferson St. Plant in Merrick, and the Newbridge Plant in North Bellmore.
- Breaking ground on construction of the 6 Million-Gallon-Per-Day Advanced Oxidation Plant for removal of 1,4-Dioxane at the Seaman's Neck Treatment Plant in Wantagh.
- Drilling of a replacement 3 Million-Gallon-Per-Day water supply well at the Sunrise Mall Well Site in Massapequa.

Do I Need to Take Special Precautions?

To ensure that tap water is safe to drink, the USEPA prescribes regulations limiting the number of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish

limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Although our drinking water meets all state and federal regulations, some people may be more vulnerable to disease-causing microorganisms or pathogens in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care provider about their drinking water.

If you have questions, contact the NCDOH at 516-227-9692. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium*, Giardia and other microbial pathogens are available from the Safe Drinking Water Hotline at 1-800-426-4791.

Substances Expected to be in Drinking Water

In general terms, the sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from the presence of animals or from human activities.

Substances that may be present in source water include:

- Microbiological Contaminants: Such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations or wildlife.
- Inorganic Contaminants (IOC's): Such as salts and metals which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- **Pesticides and Herbicides (SOC's):** Which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses.
- Organic Chemical Contaminants (VOC's): Including synthetic and volatile organic chemicals which are byproducts of industrial processes and petroleum production, and may also come from gas stations, urban storm water runoff and septic systems.
- Radioactive Contaminants: Which can be naturally occurring or may be the result of oil and gas production and mining activities.

WE CARE ABOUT WATER. IT'S WHAT WE DO.®

For more information about contaminants and potential health effects, call the EPA's Safe Drinking Water Hotline at 1-800-426-4791.

Cryptosporidiosis & Giardiasis

Although there have been no cases of Cryptosporidiosis in Nassau County attributable to the water supply, you should be aware of the risks to people with severely weakened immune systems. Cryptosporidiosis and Giardiasis are intestinal illnesses caused by microscopic parasites that can be transmitted several ways including through drinking water. Cryptosporidiosis can be very serious for people with weak immune systems, such as transplant patients; individuals receiving chemotherapy or dialysis, and people with Crohn's disease or HIV infection. Individuals who think they may have been exposed to Cryptosporidiosis or Giardiasis should contact their health care providers immediately.

Immuno-compromised patients who may have been advised by their health care provider that they may be at risk, especially when traveling, should observe the following:

- One minute of boiling water at a rolling boil will kill *Cryptosporidium* parvum and Giardia lamblia.
- Drinking bottled water does not guarantee that the water is free from Cryptosporidiosis or Giardiasis.
 Contact your health care provider about your options. If you have guestions, contact the NCDOHat 516-227-9692.

Lead & Copper Rule Statements

The Lead and Copper Rule requires sampling for lead and copper at the tap. In 1992, the first-year testing was required; tap water was sampled in compliance with EPA regulations. Test results were excellent: at least 90 percent of the lead tests were well below 10 parts per billion, and for copper, below 0.5 parts per million, indicating that the company's corrosion control treatment processes continue to be effective. The same tests were done roughly every three years from 1997 through 2020 with similar results. We are on an approved reduced monitoring schedule, and the next round of homeowner monitoring for the Lead and Copper Rule was completed in the summer of 2023. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. New York American Water is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1-800-426-4791 or at http://www.epa.gov/safewater/lead.

How do I read the Water Quality Table?

The Water Quality Table – **"Table of Detected Contaminants**" is the most important section in this report, containing details on New York American Water's comprehensive testing program for drinking water at the tap. It compares the results from tests we performed in 2020 (and earlier) with the health standards established by federal, state, and local health authorities. Of approximately 165 substances or parameters tested, detectable levels were found for about 35; and these levels are trace amounts, well below the levels set to protect public health.

To review the quality of your drinking water, compare the result in the "Maximum Amount Detected" column with the Standard in the "MCL" column. That Standard is the highest level that is considered safe for drinking water. To be in compliance, the High result in the "Range: Low-High" column should be lower than the MCL Standard. For example, under Metals & Inorganic Substances, the "MCL" standard for Barium is 2,000 ppb and the "Maximum Amount Detected" result is 120 ppb, well below the maximum allowed level (or "MCL").

Also review the "**Compliance Achieved**" and "**Violation**" columns to determine if New York American Water violated any standards. As you can see, our system had no violations. Further evidence of the quality of our water can be seen in the "**Listing of Non-Detected (ND) Contaminants**" — An extensive list of substances that we tested for and did not find in our distribution system and/or water sources.

The **Definition of Terms** below provides further explanation of the data.

Definitions of Terms Used in This Report

- Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible.
- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **MGD** = Million Gallons per Day
- **90th Percentile Value:** The values reported in the "Lead and Copper Rule" section represent the 90th percentile. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90 percent of the lead and copper values detected in your water system.
- N/A: Not applicable

WE CARE ABOUT WATER. IT'S WHAT WE DO.®

- None Detected (ND): Laboratory analysis indicates that the constituent is not present at the method detection level.
- Parts Per Million (ppm): Corresponds to one part of liquid in one million parts of liquid [Equivalent to "milligrams per liter" (mg/L)].
- Parts per Billion (ppb): Corresponds to one part of liquid in one billion parts of liquid [Equivalent to "micrograms per liter" (µg/L)].
- Parts per Trillion (ppt): Corresponds to one part of liquid in one trillion parts of liquid [Equivalent to "nanograms per liter"; or one second in approximately 31,506 years].
- **Picocuries per liter (pCi/L):** A measure of the radioactivity in water.
- Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.
- Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in the water.

Water Quality Facts

To provide high quality water, individual water samples are taken each year for chemical, physical, and microbiological tests. Testing can pinpoint a potential problem so that preventive action may be taken.

Tests are done on water taken from the well ("raw water"), water within our treatment facilities, water exiting our treatment plants at the point-of-entry to the distribution system, and from sites located throughout our distribution system after treatment. These tests are conducted in the company's state certified laboratory, by the NCDOH Laboratory, and by independent, certified laboratories approved by the state, who report results simultaneously to the company and to the Health Department. NYS allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year-to-year. Some of the data, though representative of the water quality, are more than one year old.

For a copy of the Water Supplement containing detailed data on testing at the source water wells before treatment, call us at 516-632-2239 and request a copy.

2020 STATISTICS AT-A-GLANCE

LOLO OTATIOTICO ATA GLA	
Wells Closed/Restricted	None
Violations of Standards	None
Typical Well Depth	500 Feet
Aquifers	Magothy
Pumping Stations	12
Service Area	20 Square Miles
Total Water Withdrawn	5,055,053,000 Gal.
Total Water Sales	4,837,659,000 Gal.
Total Water Lost from System*	259,890,000 Gal.
Population Served (approx.)	135,000
Customers Served (accounts)	45,018
Miles of Mains	433

 \ast Total water lost from the system includes "Accounted For" and "Unaccounted For" water. Non-revenue water is approx. 9.4% of total water delivered to the system; of which, approximately 5.1% is accounted for and 4.3% is unaccounted for.

Water Quality Table – Table of Detected Contaminants 2020 (SA2 - Merrick Operations) REGULATED SUBSTANCES

Contaminant (units)	Date Sampled	MCL	MCLG	Maximum Amount Detected	Range: Low- High	Violation (Yes/No)	Typical Source	
Microbiological							·	
Total Coliform (% positive samples in any given month) ¹	2020 (highest month was August 2020)	TT=>5% samples positive	N/A	1.6% ¹ (2 POS out of 126 total samples in August 2020)	ND (0%) - 1.6%	No	Naturally present in the environment	
Disinfection By-Products								
TTHM's (Total Trihalomethanes) (ppb) ²	Quarterly	80	0	4.8	<1.0 - 4.8	No	By-product of drinking	
HAA5's (Total Haloacetic acids) (ppb) ³	2020	60	0	<2.0	<2.0 - <2.0	No	water disinfection	
Disinfectants							•	
Chlorine (ppm) ⁴	2020	N/A	N/A	2.20	<0.10 - 2.20	No	Water additive used to control microbes	
Radiological ⁵								
Gross Alpha Activity (pCi/L)	10/2018	15	0	8.06	ND - 8.06	No		
Gross Beta Activity (pCi/L)	10/2018	50	0	4.23	0.171 - 4.23	No] 	
Combined Radium-226 and Radium-228 (pCi/L)	09/2018	5	0	4.61	0.280 - 4.61	No	Erosion of natural deposits	
Uranium (ug/L)	10/2018	30	0	0.187	ND - 0.187	No	1	

Lead and Copper Rule (Tap water samples were collected from 54 homes in the service area)

Contaminant (units)	Date Sampled	Action Level	MCLG	Amount Detected (90th %tile)	Range (Low-High)	Violation (Yes/No)	Typical Source
Copper (ppm) ⁶	07-09/	1.3	1.3	0.270	0.021- 0.340	No	
Lead (ppb) 7	2020	15	0	1.4	ND – 6.6	No	Corrosion of household plumbing systems

Metals & Inorganic Substances

Contaminant (units)	Date Sampled	MCL	MCLG	Maximum Amount Detected	Range: Low-High	Violation (Yes/No)	Typical Source
Barium (ppb)	10/2020	2,000	2,000	120	ND - 120	No	Erosion of natural deposits
Calcium (ppm)	06/2020	N/A	N/A	5.4	ND – 5.4	No	Naturally occurring
Chlorides (ppm)	06/2020	250	N/A	26.7	ND - 26.7	No	Naturally occurring or indicative of road salt contamination
Iron (ppb) ⁸	06/2020	300	N/A	940	ND - 940	No	Naturally occurring
Manganese (ppb) ⁸	05/2020	300	N/A	89	ND - 89	No	Naturally occurring
Nickel (ppb)	11/2020	N/A	N/A	25.0	1.2- 25.0	No	Naturally occurring
Nitrates as N (ppm)	07/2020	10	10	0.320	ND - 0.320	No	Erosion of natural deposits; Runoff from fertilizers and septic tanks
Sodium (ppm) ⁹	10/2020	N/A	N/A	37.5	2.6 - 37.5	No	Naturally occurring; Road salt; Water softeners
Sulfate (ppm)	06/2020	250	N/A	59.3	ND - 59.3	No	Naturally occurring; Road salt; Water softeners

Organic Substances

Contaminant (units)	Date Sampled	MCL	MCLG	Maximum Amount Detected	Range: Low-High	Violation (Yes/No)	Typical Source
Trichloroethene (TCE)- (ppb)*	12/2020	5	0	22.5	ND - 22.5	No	Discharges from metal degreasing sites and other factories. Grumman-NAVY plume
Specific Organic Compounds							
1,4 dioxane (ppb)*	11/2020	1.0	N/A	1.50	ND - 1.50	No	Released into the environment from commercial and industrial sources and is associated with inactive and hazardous waste sites

Physical Parameters & Unregulated Substances

Contaminant (units)	Date Sampled	Maximum Amount Detected	Range: Low-High	Typical Source
Alkalinity (ppm)	2020	48.5	27.9 - 48.35	N/A
Calcium Hardness (ppm)	2020	3.7	0.9 – 3.7	N/A
Color Index (units)	2020	15	ND - 15	Presence of metals such as copper, iron and manganese. Results greater than 15 units are considered 'discolored'.
Corrosivity (Langelier Index) ¹⁰	2020	(-2.31)	(-3.27) - (-2.31)	N/A
Hardness, Total (ppm)	2020	10.1	1.7 - 10.1	N/A
Magnesium (ppm)	2020	1.9	ND - 1.10	Naturally occurring
pH (units) ¹¹	2020	7.1	7.0 - 7.1	N/A
Total Dissolved Solids (TDS) (ppm)	2020	123	42 123	N/A

Footnotes:

¹ A total of 1,449 distribution system bacteriological samples were taken in 2020, with 3 positive Total Coliform results = 0.21% positives for the year. ²TTHM's mean the sum of: Bromoform, Bromodichloromethane, Dibromochloromethane, and Chloroform. The highest 'Locational Running Annual Average"

was 4.8 ppb in 2020.

³ HAA5's includes the sum of: Monochloroacetic acid, Dichloroacetic acid, Trichloroacetic acid, Bromoacetic acid, and Dibromoacetic acid. The highest 'Locational Running Annual Average" was less than 2.0 ppb ("<2.0") in 2020.

⁴ The running annual average of all Chlorine Residual readings (1,459) in the distribution system was **1.50 ppm** for 2020.

⁵ Radiological results are from individual raw water wells, and not distribution locations, as required by the NCDOH.

⁶ The level presented represents the 90th percentile of 54 sites tested. The "action level" for copper was not exceeded at any of 54 sites tested.

⁷ The level presented represents the 90th percentile of 54 sites tested. The "action level" for lead was not exceeded at any of 54 sites tested.

⁸ Higher levels of iron (up to 1,000 ppb) may be allowed by the state when justified by the water supplier, as is the case with NYAW - Merrick Operations district. The Total of iron and manganese should not exceed 500 ppb, unless allowed by the state, as is the case with NYAW - Merrick Operations district.

WE CARE ABOUT WATER. IT'S WHAT WE DO.®

⁹ Water containing more than 20 mg/L of sodium should not be used for drinking by persons on severely restricted sodium diets. Water containing more than 270 mg/L of sodium should not be used for drinking by people on moderately restricted sodium diets.

¹⁰ The NCDOH recommends that the Langelier Saturation Index (for corrosivity) be as close to zero as possible.

¹¹NCDOH guidelines recommend a pH range of 7.0 – 8.5. The running annual average of all pH readings in the distribution system taken during routine bacteriological testing was **7.10 units** in 2020.

*See public notification attached for 1,4 dioxane information.

Unregulated Contaminant Monitoring Rule (UCMR4):

The following parameters were tested for as per a required USEPA monitoring program (2018 – 2020) to try to quantify the presence and amount of emerging or unregulated compounds to see if any should be regulated by the EPA in the future. Unregulated contaminants are those for which USEPA has not established drinking water standards for. The purpose of unregulated contaminant monitoring is to assist USEPA in determining the occurrence of these constituents in drinking water and whether future regulation is warranted. (No Federal MCL's exist for these parameters to-date, although some might be already regulated by the NYSDOH.)

The following contaminants that we tested for on the treated water exiting our treatment plants ("Entry Point" locations) were detected as follows:

		8		
Contaminant (units)	Date Sampled	Maximum Amount Detected	Range: Low-High	Typical Source
Manganese (ppb)	2018	37	ND - 37	Naturally occurring
Germanium (ppb)	2018	0.41	ND - 0.41	Naturally occurring

The following contaminants that we tested for on the raw water wells were detected as follows:

Contaminant (units)	Date Sampled	Maximum Amount Detected	Range: Low-High	Typical Source
Bromide (ppb)	2018	190	ND - 190	Naturally occurring
Total Organic Carbon (ppb)	2018	901.5	ND - 901.5	Naturally occurring

The following contaminants that we tested for on distribution system locations were detected as follows:

Contaminant (units)	Date Sampled	Maximum Amount Detected	Range: Low-High	Typical Source
Total Haloacetic Acids – UCMR4 (ppb)	2018	0.83	ND – 0.83	By-product of drinking water disinfection
Total Haloacetic Acids – Bromide-related (ppb)	2018	0.38	ND - 0.38	By-product of drinking water disinfection

Total Haloacetic Acids for UCMR4 include the sum of the following contaminant combinations: Monochloroacetic acid, Monobromoacetic acid, Dichloroacetic acid, Trichloroacetic acid, Bromochloroacetic acid, Dibromoacetic acid, Bromodichloroacetic acid, Chlorodibromoacetic acid, Tribromoacetic acid.

Unregulated Contaminant Monitoring Rule (UCMR4) - Listing of Non-Detected (ND) Contaminants (2018):

The following contaminants that we tested for under UCMR4 Monitoring Program were "Non-detected" (ND):

Alcohols:	Pesticides and byproducts:
1-butanol	Alpha-Hexachlorocyclohexane
2-methoxyethanol	Chlorpyrifos
2-propen-1-ol	Dimethipin
	Ethoprop
Semi-Volatile Chemicals:	Oxyfluorfen
Butylated hydroxyanisole (BHA)	Profenofos
o-toluidine	Tebuconazole
Quinolone	Total Permethrin (cis- & trans-)
	Tribufos
Upredulated Contensinent Menitering Dule (UOMD2):	

Unregulated Contaminant Monitoring Rule (UCMR3):

The following parameters were tested for as per a required USEPA monitoring program (2013 - 2015) to try to quantify the presence and amount of emerging or unregulated compounds to see if any or all of them should be regulated by the USEPA in the future (No MCL's for these parameters to-date).

The following contaminants that we tested for on the treated water exiting our treatment plants ("Entry Point" locations) were detected as follows:

Contaminant (units)	Date Sampled	Maximum Amount Detected	Range: Low-High	Typical Source
1,4-Dioxane (ppb) *	2017-2019	1.35	ND - 1.35	Manufacturing solvent

*NYS guidance level for 1,4-dioxane was 1.0 ppb before new regulations were put into effect in August of 2020. Special 1,4-dioxane sampling was performed on raw water wells in 2017-2019 by the water company for proactive, informational, and quality control purposes only, and not due to any regulatory requirement.

USEPA Health Advisory Definitions:

Health advisories provide information on contaminants that can cause human health effects and are known or anticipated to occur in drinking water. EPA's Health Advisories are non-enforceable and non-regulatory and provide technical information to states agencies and other public health officials on health effects, analytical methodologies, and treatment technologies associated with drinking water contamination.

WE CARE ABOUT WATER. IT'S WHAT WE DO.®

Special Message about new Regulations on Emerging Contaminants by NYSDOH:

On August 26, 2020, NYS adopted new drinking water standards for public water systems that set maximum contaminant levels (MCLs) of 10 parts per trillion (ppt) each for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), and 1 part per billion (ppb) for 1,4-dioxane.

About Drinking Water Standards and MCLs

A MCL is the highest level of a contaminant allowed in drinking water delivered by public water systems. They are enforceable regulatory limits. MCLs are set far below levels that cause health effects. According to the NYSDOH, because MCLs are set at levels with a large margin of protection, an exceedance of an MCL does not mean that water is unsafe for use while the public water system takes actions to reduce the levels.

The USEPA has also established guidance for the presence of PFOA and PFOS in drinking water. The EPA has established a nonenforceable health advisory level of 70 parts per trillion (ppt) for the sum of PFOA and PFOS. An MCL for 1,4-Dioxane in drinking water has not been established by the EPA.

What Are Emerging Compounds?

1,4-Dioxane is a synthetic industrial chemical that is present in many goods, including paint strippers, dyes, greases, antifreeze, and aircraft deicing fluids, and in some consumer products such as deodorants, shampoos and cosmetics.

PFOA/PFOS are per- and polyfluoroalkyl substances (PFAS), which are a group of man-made chemicals that can be found in food packaging; commercial household products, including stain- and water-repellent fabrics (ex: Scotchgard), nonstick products (e.g., Teflon), polishes, waxes, paints, and cleaning products; and fire-fighting foams.

Emerging compounds can enter our water resources after being landfilled, spilled, discharged as waste, or by seepage and infiltration into the water table, eventually entering water supplies.

NYAW's Action Plan

In advance of the adoption of these new standards by the State, New York American Water tested its entire water supply to determine the presence of these emerging compounds.

NYAW determined that, of the 55 sites that supply water across NYAW's service areas in Long Island and upstate New York, one site in your district has detections of emerging compounds above the NYS MCLs. Detections of 1,4-Dioxane at the Seamans Neck Well Station in North Wantagh/Levittown at 1.4 ppb. NYAW is pursuing Advanced Oxidation Process (AOP) treatment for 1,4-Dioxane at the Seamans Neck Well Station. NYAW has completed our AOP pilot testing and is working closely with the NCDOH on final treatment design. While AOP treatment will take time to fully install, NYAW's proactive approach has significantly reduced the time needed to install the right treatment system for our customers served by the Seamans Neck Well Station. Please see Public Notification below.

NYAW is pursuing the appropriate treatment where needed. While new treatment will take time to fully install, NYAW's proactive approach has significantly reduced the time needed to install the right treatment system for our customers.

When a public water system (PWS) is issued a deferral, the water system agrees to a schedule for corrective action and compliance with the new PFOS, PFOA, or 1,4-dioxane MCL's. In exchange, the NYSDOH agrees to defer enforcement actions, such as assessing fines, if the PWS is meeting established deadlines. Deferral recipients are required to update the Department and the NCDOH each calendar quarter on the status of the established deadlines. The Department can resume enforcement if the agreed upon deadlines are not met. Information about our deferral and established timelines can be found at the following site: https://www.amwater.com/nyaw/water-quality/Emerging-Compounds/seamans-neck

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER Deferral Issued for 1,4-Dioxane to New York American Water (NYAW) – Merrick

Why are you receiving this notice/information?

You are receiving this notice because testing of our public water system found the chemical 1,4-Dioxane in your drinking water above New York State's maximum contaminant level (MCL) of 1 ppb for 1,4-dioxane. The MCLs are set well below levels known to cause health effects in animal studies. Therefore, consuming water with 1,4-dioxane at the level detected does not pose a significant health risk. Your water continues to be acceptable for all uses.

NYAW - Merrick has submitted, and the New York State Department of Health (Department) has issued, a deferral to NYAW - Merrick. When a public water system is issued a deferral, the water system agrees to a schedule for corrective action and compliance with the new MCLs. In exchange, the Department agrees to defer enforcement actions, such as assessing fines, if the water system is meeting the established deadlines. We are required to update the Department and the Nassau County Department of Health each calendar quarter on the status of our projects. If we do not meet the agreed upon deadlines, the Department can resume enforcement.

What are the health effects of 1,4-dioxane?

Laboratory studies show that 1,4-dioxane caused liver cancer in animals exposed at high levels throughout their lifetime. Other types of cancer have also been reported, although less consistently than liver cancer. There is no evidence of 1,4-dioxane cancer effects in humans. The United States Environmental Protection Agency considers 1,4- dioxane a likely human carcinogen based upon studies of animals exposed to high levels of this chemical over their entire lifetimes. At the level of 1,4-dioxane detected in your water, exposure from drinking water and food preparation is well below 1,4-dioxane exposures associated with health effects.

What is New York State doing about 1,4-Dioxane in public drinking water?

The New York State Department of Health (NYS DOH) has adopted a drinking water regulation that requires all public water systems to test for 1,4-dioxane. If found above the MCLs, the water supplier must take steps to lower the level to meet the standard. Exceedances of the MCL signal that steps should be taken by the water system to reduce contaminant levels.

What is being done to remove these contaminants?

NYAW - Merrick is in the process of installing treatment to remove 1,4-dioxane at our Seamans Neck Road Facility and will operate impacted wells in a last on first off sequence to minimize exposure to 1,4-Dioxane. Additional information will be shared as further testing and progress occurs. This process is similar for any chemical detected in public drinking water that requires mitigation. The compliance timetable will ensure that your drinking water will meet the MCL as rapidly as possible. The deferral is effective until August 25, 2022.

Where can I get more information?

For more information, please contact our Customer Service Center at 1-877-426-6999 or Natasha Niola, Water Quality Manager at 516-632-2239. You can also contact the Nassau County Health Department at (516) 227-9692. If you have additional questions about these contaminants and your health, talk to your health care provider who is most familiar with your health history and can provide advice and assistance about understanding how drinking water may affect your personal health.

Public Water System ID#: NY2902840 Date: January 21, 2021

Listing of Non-Detected (ND) Contaminants – 2020 (SA2 - Merrick Operations):

None of the following compounds that we analyzed for were detected in your drinking water at the respective method detection levels:

Microbiological: E.coli

Inorganics & Physical:

Ammonia as N Cyanide, free Fluoride Nitrite as N Perchlorate Surfactants (as MBAS) Turbidity

Metals:

Antimony Arsenic Beryllium Cadmium Chromium Mercury Selenium Silver Thallium Zinc

Miscellaneous: Asbestos fibers Chlorobenzene Chloroethane Chloromethane Chlorodifluoromethane 2-Chlorotoluene 4-Chlorotoluene Dibromomethane 1.2-Dichlorobenzene 1,3-Dichlorobenzene 1.4- Dichlorobenzene (Meta) Dichlorodifluormethane 1.1-Dichloroethane 1.2-Dichloroethane 1,1-Dichloroethane cis-1.2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane 1.3-Dichloropropane 2.2-Dichloropropane 1,1-Dichloropropene cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadinene Isopropylbenzene 4-Isopropyltoluene Methyl Tert Butyl Ether (MTBE) Methylene Chloride (Dichloromethane) n-Propylbenzene Styrene 1,1,2-trichloro 1,2,2trifluoroethane 1,1,1,2-Tetrachloroethane 1.1.2.2-Tetrachloroethane Tetrachloroethene (PCE) Toluene 1.2.3-Trichlorobenzene 1,2,4-Trichlorobenzene 1.1.1-Trichloroethane 1,1,2-Trichloroethane Trichlorofluoromethane 1.2.3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene M-Xylene 0-Xylene P-Xylene Vinvl Chloride

Volatile Organic Compounds (VOC's):

Benzene

Bromobenzene

Bromomethane

n-Butvlbenzene

sec-Butvlbenzene

tert-Butylbenzene

Carbon Tetrachloride

Bromochloromethane

Synthetic (Specific) Organic Compounds (SOC's)* Regulated Group #1:

Alachlor Aldicarb Aldicarb Sulfone Aldicarb Sulfoxide Atrazine Carbofuran Chlordane, Total 1,2-Dibromo-3-Chloropropane (DBCP) 2,4-D Endrin 1,2-Dibromomethane (EDB) Heptachlor Heptachlor Epoxide Lindane Methoxychlor PCB's Pentachlorophenol Toxaphene 2,4,5-TP (Silvex)

Regulated Group #2:

Aldrin Benzo(a)pyrene Butachlor Carbaryl Dalapon Di (2-Ethylhexyl) adipate Di (2-Ethylhexyl) phthalalte Dicamba Dieldrin Dinoseb Diquat Endothall Glyphosate Hexachlorobenzene Hexachlorocyclopentadiene 3-Hydroxycarbofuran Methomyl Metolachlor Metribuzin Oxamyl (Vydate) Picloram Propachlor Simazine 2,3,7,8-TCDD (Dioxin)

* Synthetic (Specific) Organic

Compounds (SOC's) are mainly Pesticides and Herbicides, and are required to be tested on raw water wells, and not on distribution locations, as per NCDOH requirements.

Unregulated Contaminant Monitoring Rule (UCMR3):

The following parameters were tested for as per a required USEPA monitoring program (2013 - 2015) to try to quantify the presence and amount of emerging or unregulated compounds to see if any should be regulated by the EPA in the future.

The following contaminants that we tested for on the treated water exiting our treatment plants ("point of entry" locations) were "Nondetected" (ND):

UCMR3 Volatile Organic Compounds (VOC's) Group (all ND):

1,1-Dichloroethane 1,2,3-Trichloropropane 1,3-Butadiene Bromochloromethane (halon1011) Bromomethane Chlorodifluoromethane Chloromethane <u>UCMR# Perfluorinated</u> Compounds Group (all ND):

Perfluorooctanesulfonin acid (PFOS) Perfluorooctonoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorohexanesulfonic acid (PFHxS) Perfluoroheptanoic acid (PFHpA) Perfluorobutanesulfonic acid (PFBS)

UCMR3 Hormones Group (all ND):

Estradiol (17beta-) Equilin 4-Androstene-3,17-dione Estrone Ethynylestradiol (ethinyl estradiol) Hydroxyestradiol Testosterone

WE CARE ABOUT WATER. IT'S WHAT WE DO.®

RESULTS TO PROVE IT

We have an exceptional track record when it comes to water quality and drinking water regulatory compliance. That's why we invite you to read our latest Water Quality Report, specifically for your local community.

new york American Water

WE KEEP LIFE FLOWING®

PROVIDING SAFE, QUALITY WATER SERVICE

- Our drinking water meets or surpasses all primary state and federal standards, including regulations related to lead.
- Statewide, we perform thousands of tests each year on the water before it leaves our treatment plants, plus a significant number of tests in the distribution system.
- Our team of water quality experts sample and interpret data regularly, following state quality control standards. Our team utilizes certified labs across the state to process and analyze these samples. We sample above and beyond the required regulations provided by the USEPA and the local health departments.

See how we're doing in your community.

Every year, we provide a detailed analysis of the water we deliver to our communities in our Water Quality Reports. To learn more about our commitment to water quality or to view the Water Quality Report for your area, visit us online at **newyorkamwater.com**. Under Water Quality, select Water Quality Reports.

QUALITY. ONE MORE WAY WE KEEP LIFE FLOWING.

2023 Consumer Confidence Report on Water Quality for 2022

Annual Water Quality Report

Merrick Operations District Public Water Supply ID# NY2902840

Message from the President

Dear Liberty Customers,

At Liberty, providing customers with safe, quality drinking water is at the forefront of everything we do – day in and day out. We do this by continuously investing in our infrastructure and by constantly looking for opportunities improve our operations and seek enhancements to our daily processes.

Liberty makes significant investments each year to ensure the water we deliver to customers meets all Safe Drinking Water Act (SDWA) standards established by the United States Environmental Protection Agency (EPA) and New York State Department of Health (NYSDOH). We invest responsibly to maintain the local water infrastructure, because strong infrastructure is a key factor in delivering quality water. Additionally, we have a top-notch water quality program that ensures the water delivered to your home or business is thoroughly tested by independent laboratories and the data is provided to the state to verify compliance with all applicable SDWA and NYSDOH water regulations.

In the pages that follow, you will find our 2022 Water Quality Report (Consumer Confidence Report), which outlines detailed information regarding the quality of water we provided in calendar year 2022. This report can be found on our website at <u>www.libertyenergyandwater.com</u>. It includes information like the source of your water, the areas we serve, information about naturally occurring substances in the water and how we get eliminate them, our complex intake and distribution system, and more.

If you have any questions about the information within this report, please don't hesitate to contact us anytime at 1-877-426-6999 TDD:711. We encourage you to visit our website at <u>www.libertyenergyandwater.com</u> to stay up-to-date and receive tips about water conservation and more.

On behalf of the entire Liberty family, thank you for being a valued customer and neighbor. We are proud to be your water provider and look forward to serving you for years to come.

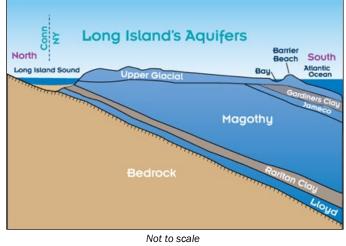
Sincerely, Chris Alario President, Liberty New York Water

To request a printed copy of this report, please call us at 1-877-426-6999 TDD:711. This report can also be found at <u>www.libertyenergyandwater.com</u>.

Where Does My Water Come From?

The Merrick water system serves approximately 135,000 people through 45,018 connections. Our water source is groundwater wells located in the aquifer system beneath the land surface. The water is treated as prior to distribution in five ways. Sodium hypochlorite is added to the water bacteriological disinfection. Caustic Soda (Sodium Hydroxide) is used to raise pH and minimize corrosivity to water mains and household plumbing. Calciquest (Phosphate compound) is used to maintain optimum treatment and inhibit the corrosion of plumbing materials; and to stabilize naturally occurring iron and manganese that can cause discolored water conditions. Filtration to remove iron at three well locations. Granular Activated Carbon (GAC) to remove organics at one well location (US Navy / Northrop-Grumman plume site).

Communities Served


Bellmore	North Bellmore
East Massapequa*	Massapequa*
Merrick	North Merrick
North Seaford	Seaford
North Wantagh	Wantagh
Levittown*	

*community partially served

The Aquifers

The aquifers are water-bearing geologic deposits of sand and clay that absorb and store about 45 percent of the rain and snow that fall on Long Island. Merrick Operations Center has wells in the Magothy aquifer.

If you have a private well which is unregulated and untested, you should not use the water for drinking or cooking. (Source: NCDOH)

Be Water Smart – Think Conservation

The New York State Department of Environmental Conservation (NYSDEC) requested that all Long Island water suppliers reduce their peak pumpage by 15 percent to ensure the long-term sustainability of the Long Island aquifer. Our customers must conserve water to help us achieve this goal. When our customers conserve, not only do they reduce their water bill, but Liberty is able to defer infrastructure investment projects that are needed to meet peak water demand, which can reach as high as 50 million gallons of water a day in the summer.

The following suggestions will help you make your home "water efficient" without sacrificing comfort or changing lifestyles:

- Install smart irrigation technology on your irrigation system to irrigate as efficiently as possible.
- Install a moisture sensor on your irrigation system to prevent wasteful watering during or just after a rain.
- Use native, drought-resistant shrubs, trees, plants, and grasses in your landscape.
- Run dishwashers and washing machines only with full loads.
- Turn off the tap when brushing your teeth or shaving.
- Check every faucet for leaks. Even a slow drip can waste 15 to 20 gallons a day, or about 6,000 gallons a year.
- If you suspect that you have a water leak, order our free Leak Detection Kit. The kit contains information, hints, and dye tablets to help you determine if you have a wasteful water loss.
- Replace older devices with water-saving showerheads, faucets, or low flush toilets. A normal showerhead uses 5 to 7 gallons a minute. Switching to a low-flow model that uses 1.5 gallons a minute can save a family thousands of gallons of water a year.

Source Water Assessment

The NYSDOH, with assistance from the local health department and the CDM consulting firm, has completed a source water assessment for this system, based on available information. Possible and actual threats to this drinking water source were evaluated. The source water assessment includes a susceptibility rating based on the risk posed by each potential source of contamination and how rapidly contaminants can move through the subsurface to the wells. The susceptibility of a water supply well to contamination is dependent upon both the presence of potential sources of contamination within the well's contributing area and the likelihood that the contaminant can travel through the environment to reach the well. The susceptibility rating is an estimate of the potential for contamination of the source water, it does not mean that the water delivered to consumers is or will become contaminated. See section "Are there contaminants in our drinking water?" for a list of the contaminants that have been detected (if any). The source water assessments provide resource additional information managers with for protecting source waters into the future.

Drinking water is derived from 16 wells. The source water assessment has rated most of the wells as having a very high susceptibility to nitrates. The elevated susceptibility to industrial solvents is due primarily to point sources of contamination related to transportation routes and commercial/ industrial facilities and related activities in the assessment area. The high susceptibility to nitrate contamination is attributable to residential, commercial, and institutional land use and related practices in the assessment area, such as fertilizing lawns.

What are Drinking Water Standards?

Drinking water standards are the regulations set by the USEPA to control the level of contamination in the nation's drinking water. The USEPA and the NYSDOH are the agencies responsible for establishing drinking water quality standards in New York. This approach includes assessing and protecting drinking water sources; protecting wells and surface water; making sure water is treated by qualified operators; ensuring the integrity of the distribution system; and making information about water quality available to the public. The water delivered to your home meets the standards required by the USEPA and the NYSDOH.

This report describes those contaminants that have been detected in the analyses of almost 200 different potential contaminants, nearly 100 of which are regulated by the USEPA and the NYSDOH. Liberty is proud to tell you that there have been no contaminants detected that exceed any federal or state drinking water standards. Hundreds of samples are analyzed every year by a NYS certified laboratory. Sample results are available on the Table in this report. This report is intended to provide information for all water users. If received by an absentee landlord, a business, or a school, please share the information with tenants, employees, or students. We are happy to make additional copies of this report available; please call Liberty's Water Quality Manager at 516-273-5670. You may also access this report on the Liberty web page at www.libertyenergyandwater.com.

Substances That Could be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up

substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants, such as salts and metals, which can be naturally- occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwaterrunoff, and septic systems. Radioactive Contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the NYSDOH prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration (USFDA) also establishes limits for contaminants in bottled water that provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA Safe Drinking Water Hotline at 1-800-426-4791. For information on bottled water visit the USFDA website at <u>www.fda.gov</u>.

Do I Need to Take Special Precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such with as persons cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The USEPA and Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection Cryptosporidium and other microbial by contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

Cryptosporidiosis & Giardiasis

Although there have been no cases of Cryptosporidiosis in Nassau County attributable to the water supply, we thought you should be aware of the risks to people with severely weakened immune systems. Cryptosporidiosis and Giardiasis are intestinal illnesses caused by microscopic parasites that can be transmitted several ways including through drinking water. Cryptosporidiosis can be very serious for people with weak immune systems, such as transplant patients; individuals receiving chemotherapy or dialysis, and people with Crohn's disease or HIV infection. Individuals who think they may have been exposed to

Cryptosporidiosis or Giardiasis should contact their health care providers immediately.

Immuno-compromised patients who may have been advised by their health care provider that they may be at risk, especially when traveling, should observe the following:

- One minute of boiling water at a rolling boil will kill *Cryptosporidium parvum* and *Giardia lamblia*.
- Drinking bottled water does not guarantee that the water is free from Cryptosporidiosis or Giardiasis.

Contact your health care provider about your options. If you have questions, contact the NCDOH at 516-227-9692.

Lead & Copper Rule Statements

The Lead and Copper Rule requires sampling for lead and copper at the tap. In 1992, the first-year testing was required; tap water was sampled in compliance with EPA regulations. Test results were excellent: at least 90 percent of the lead tests were well below 10 parts per billion, and for copper, below 0.3 parts per million, indicating that the company's corrosion control treatment processes continue to be effective. The same tests were done roughly every three years from 1997 through 2020 with similar results. The next round of homeowner monitoring for the Lead and Copper Rule will be completed in the summer of 2023

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Liberty Utilities is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1-800-4264791 or at http://www.epa.gov/safewater/lead.

System Improvements

In 2022, we continued to make significant upgrades to our system and infrastructure. These improvements include:

- Replaced 6,200 feet of water main throughout the
- service territory.
- Replaced 1 fire hydrants.
- Replaced 74 service lines.
- Replaced 1,731 water meters.
- Completed a new 3 Million-Gallon-Per-Day water supply well at the Newbridge Road Treatment Plant in North Bellmore.
- Completed a pipe loop water treatment study in South Hempstead researching ways to reduce rusty water.
- Completed clean out of Newbridge Road Treatment Plant water recharge basin.
- Construct wellhouse at a new water supply well at Jefferson Plant in Merrick.
- Completed blow off automation at Jefferson Supply Well 11 to reduce rusty water.
- Completed liner installation and rehabilitation of the 2 Million-Gallon-per-Day Newbridge Well 3 in North Bellmore.
- Complete cleaning and rehabilitation of the 3 Million-Gallon-per-Day Jerusalem Well 5 in Wantagh.

Improvements planned for 2023 include:

- Replace approximately 775 feet of water main.
- Replace 2 fire hydrants.
- Replace 8 service lines.
- Replace approximately 1,470 water meters.
- A new iron removal facility at Charles Plant in Merrick
- Start construction on 6 Million-Gallon-Per-Day Advanced Oxidation Plant for removal of 1,4-Dioxane at the Seaman's Neck Treatment Plant in Levittown.
- Replace iron filter media at Seaman's Neck Road Plant. Install new pH optimization system.
- Demolish old wellhouse at Jefferson Plant in Merrick.

2022 STATISTICS AT-A-GLANCE

Wells Closed/Restricted	1
Violations of Standards	None
Typical Well Depth	500 Feet
Aquifers	Magothy
Pumping Stations	12
Service Area	20 Square Miles

Total Water Withdrawn5,155,729Total Water Sales4,846,38Population Served (approx.)135,000Customers Served (accounts)45,018Miles of Mains433

5,155,729,000Gal. 4,846,385,260 Gal. 135,000 45,018 433

Average Residential Usage & Cost

In 2022, the average residential household used approximately 106,965 gallons of water at a cost of about \$656, or \$1.80 a day. With an average of 3.0 persons per household, the cost of water was about 60¢ a day per person.

Important Health Information

Lead

Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Liberty New York Water is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact Liberty New York Water at 1-877-426-6999 TDD:711.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead.

1,4 dioxane

Laboratory studies show that 1,4 dioxane caused liver cancer in animals exposed at high levels throughout their lifetime. Whether 1,4 dioxane causes cancer in humans is unknown. The United States Environmental Protection Agency considers 1,4 dioxane as likely to be carcinogenic to humans based upon studies of animals exposed to high levels of this chemical over their entire lifetimes.

Is Our Water System Meeting Other Rules That Govern Our Operations?

During 2022, Merrick water system was in compliance with applicable State drinking water operating, monitoring and reporting requirements.

How Might I Become Actively Involved?

Customers can participate in decisions that may affect the quality of water by:

- Reading the information provided in bill inserts and special mailings
- Contacting the company directly with questions or to discuss issues
- Responding to survey requests
- Attending presentations by the company made to local community and civic associations; our last meeting was October 2022. 2023 meetings TBD.
- Contacting agencies such as the Nassau County Health Department (NCDOH) at 516-227-9692

Testing Results

During the year, Liberty collects water samples to determine the presence of any radioactive, biological, inorganic, or organic contaminants. All the substances listed in the table below tested under the Maximum Contaminant Level (MCL). Liberty believes it is important you know what was detected, and how much of the substance was present. The state allows the monitoring of certain substances less than once a year because the concentrations of these substances do not change frequently. If a substance was tested and there was no detection, it is not listed in this table. You can find Definitions, Terms and Abbreviations related to this Table in the next section for easy reference.

Merrick 2022 Annual Water Quality Report

PRIMARY STANDARDS - Health Based

DISTRIBUTION SYSTEM								
Disinfectant Residuals	Violation? (Yes/No)	Date of Sample	MRDL	MCLG	Range of Detection	Average	Typical Source of Constituent	
Chlorine (ppm) ¹	No	2022	4	N/A	0.05 – 2.20	1.44	Drinking water disinfectant added for treatment.	
Disinfection By- Products ²	Violation? (Yes/No)	Date of Sample	Primary MCL	MCLG	MCLG Dete		Typical Source of Constituent	
TTHMs (ppb)	No	Quarterly 2022	80	N/A		– 4.3 . 2.73	Byproduct of drinking water disinfection.	

Lead & Copper ³	Violation? (Yes/No)	Date of Sample	AL	MCLG	Sample Data	Range of Detection	90th % Level	Typical Source of Constituent
Copper (ppm)	No	07-09/	1.3	1.3	0 of the 32 samples collected	0.02 – 0.34	0.27	Internal corrosion of household plumbing systems; discharges from
Lead (ppb)	No	2020	15	0	exceeded the action level.	ND – 6.6	1.4	industrial manufacturers; erosion of natural deposits

RAW WELLS						
Radiological Constituents ⁴	Violation? (Yes/No)	Date of Sample	Primary MCL	MCLG	Range of Detections	Typical Source of Constituent
Combined Radium-226 & 228 (pCi/L)	No	07/2021	5	0	ND – 2.2	
Gross Beta (pCi/L)	No	07/2021	50 ^a	0	ND – 4.65	Erosion and decay of natural deposits.
Uranium (ppb)	No	07/2021	30 ^b	0	0.02 – 0.18	
Gross Alpha activity (pCi/L)	No	07/2021	15	0	ND – 2.2	Erosion and decay of natural deposits.

Inorganic Constituents	Violation? (Yes/No)	Date of Sample	Primary MCL	MCLG	Range of Detections	Typical Source of Constituent
Barium (ppm)	No	08/2022	2	2	ND – 0.01	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes.
Nitrate (ppm)	No	08/2022	10	10	ND – 0.11	Erosion of natural deposits, fertilizers, sanitary waste systems.
Copper (ppm)	No	06/2022	1.3	1.3	ND – 0.04	Erosion of natural deposits.
Lead (ppb)	No	Monthly 08/2022	15	0	Avg- 1.6 ND – 2.2	Erosion of natural deposits.
Thallium (ppb)	No	Monthly 08/2022	2	0.5	Avg- 0.39 ND – 0.48	Leaching from ore processing sites; Discharge from electronics, glass, and drug factories.

Chloride (ppm)	No	08/2022	250	N/A	Avg- 9.8 3.0 – 22.2	Natural occurring or indicative of road salt contamination.
Sulfate (ppm)	No	08/2022	250	N/A	ND – 34.1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Cyanide (ppb) ⁵	No	08/2022	200	200	ND – 78.5	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories.
Turbidity (NTU)	No	05/2022	5	N/A	ND – 3.2	Soil runoff.
Zinc (ppm)	No	10/2022	5	N/A	ND – 0.06	Naturally occurring.
Fluoride (ppm) ⁶	No	07/2022	2.2	N/A	ND – 0.21	Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories.

Organic Constituents	Violation? (Yes/No)	Date of Sample	Primary MCL	MCLG	Range of Detection	Typical Source of Constituent
1,4 dioxane (ppb) ⁷	No	Quarterly 2022	1	N/A	ND – 2.3	Released into the environment from commercial and industrial sources and is associated with inactive and hazardous waste sites.
Trichloroethene (TCE) (ppb) ⁸	No	06/2022	5	0	ND – 27.9	Discharges from metal degreasing sites and other factories.

SECONDARY STANDARDS - Aesthetics								
RAW WELLS								
Constituent	Violation? (Yes/No)	Date of Sample	Secondary MCL	MCLG	Average/ Range	Typical Source of Constituent		
Sodium (ppm) ⁹	No	08/2022	N/A	N/A	ND – 44.8	Naturally occurring; Road salt; Water softeners.		
Iron (ppm) ¹⁰	No	07/2022	0.3	N/A	ND – 0.95	Naturally occurring.		
Manganese (ppm) ¹¹	No	06/2022	0.3	N/A	ND – 0.05	Naturally occurring.		
Color (units)	No	08/2022	15	N/A	ND - 8	Natural color may be caused by decaying leaves, plants, and soil organic matter.		
Odor (units) ¹²	No	06/2022	3	N/A	ND - 8	Organic or inorganic pollutants originating from municipal and industrial waste discharges; natural sources.		

UNREGULATED CHEMICAL MONITORING							
RAW WELLS							
Constituent	Violation? (Yes/No)	Date of Sample	Notification Level	Range of Detection	Typical Source of Constituent		
Nickel (ppm)	N/A	08/2022	N/A	ND – 0.01	Naturally occurring.		
Alkalinity (ppm)	N/A	08/2022	N/A	ND – 56.3	N/A		
Calcium Hardness (ppm)	N/A	06/2022	N/A	ND – 15.1	N/A		
Calcium (ppm)	N/A	06/2022	N/A	ND – 6.0	N/A		
Corrosivity (LSI) ¹³	N/A	08/2022	N/A	(-7.48) – (-1.99)	N/A		
Total Hardness (ppm)	N/A	06/2022	N/A	ND – 23.3	N/A		
Magnesium (ppm)	N/A	06 & 08/2022	N/A	ND – 2.0	N/A		
pH (units) ¹⁴	N/A	03/2022	N/A	6.16 – 8.73	N/A		
TDS (ppm)	N/A	08/2022	N/A	ND - 169	N/A		
Germanium (ppb)	N/A	06/2018	N/A	0.41	N/A		

Notes:

1- Chlorine residual results in the table above represent averages of samples taken at the treatment plant Point-of-Entry location to the distribution system.

- 2- The Highest Level Detected from the table above for TTHM's and HAA's represent the highest level from the three distribution locations sampled. TTHMs (trihalomethanes) include chloroform, bromodichloromethane, dibromochloromethane, and bromoform. HAA5 (haloacetic acids) include mono-, di-, and trichloroacetic acid, and mono- and di-bromoacetic acid). HAA5's were not detected.
- 3- The level presented represents the 90th percentile of 54 sites tested. The "action level" for copper was not exceeded at any of 54 sites tested. The level presented represents the 90th percentile of 54 sites tested. The "action level" for lead was not exceeded at any of 54 sites tested.
- 4- Radiological results are from raw water wells, and not distribution locations, as required by the NCDOH. (a) The State considers 50 pCi/L to be the level of concern for beta particles. (b) 30 μg/l of uranium is approximately 20.1 pCi/L
- 5- Some people who drink water containing cyanide well in excess of the MCL over many years could experience nerve damage or problems with their thyroid. The wells where cyanide were detected, were resampled, and found to be not detected.
- 6- Fluoride was detected in two wells. The wells were resampled, and fluoride was not detected.
- 7- On August 26, 2020, New York State adopted new drinking water standards for public water systems that set maximum contaminant levels (MCLs) of 10 parts per trillion (10 ppt) each for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), and 1 part per billion (1 ppb) for 1,4-dioxane. One plant in the Merrick Operations district has 1,4 dioxane levels above the MCL. NYSDOH granted Merrick Operations District a deferral. Please see public notification on last page of this report.
- 8- TCE-Some people who drink water containing trichloroethylene in excess of the MCL over many years could experience problems with their liver and may have an increased risk of getting cancer. Please note that the raw wells with detections of TCE are treated with Granular Activated Carbon (GAC). The water being distributed to the customers does not contain TCE.
- 9- Sodium (mg/l): Water containing more than 20 mg/l of sodium should not be used for drinking by people on a severely restricted sodium diet. Water more than 270 mg/l of sodium should not be used for drinking by people on a moderately restricted diet.
- 10- Higher levels of iron (up to 1,000 ppb) may be allowed by the state when justified by the water supplier, as is the case with Merrick Operations district. The Total of iron and manganese should not exceed 500 ppb, unless allowed by the state, as is the case with Merrick Operations district. The maximum level detected above is on a well that has iron removal filtration prior to distribution. Iron is essential for maintaining good health. However, too much iron can cause adverse health effects. Drinking water with very large amounts of iron can cause nausea, vomiting, diarrhea, constipation and stomach pain. These effects usually diminish once the elevated iron exposure is stopped. A small number of people have a condition called hemochromatosis, in which the body absorbs and stores too much iron. People with hemochromatosis may be at greater risk for health effects resulting from too much iron in the body (sometimes called "iron overload") and should be aware of their overall iron intake.
- 11- Manganese is an essential nutrient that is necessary to maintain good health. However, exposure to too much manganese can cause adverse health effects. There is some evidence from human studies that long-term exposure to manganese in drinking water is associated with nervous system effects in adults (e.g., weakness, stiff muscles and trembling of the hands) and children (learning and behavior). The results of these studies only suggest an effect because the possible influences of other factors were not adequately assessed. There is supporting evidence that manganese causes nervous system effects in humans from occupational studies of workers exposed to high levels of manganese in air, but the relevance of these studies to long term drinking water exposure is less clear because the exposures were quite elevated and by inhalation, not by ingestion.
- 12- The odor result of 8 units was in one well. That well was removed from service and resampled. There was 1 unit of odor in the resample.
- 13- The NCDOH recommends that the Langelier Saturation Index (for corrosivity) be as close to zero as possible.
- 14- NCDOH guidelines recommend a pH range of 7.5 8.5. The running annual average of all pH readings in the distribution system was 7.36 units in 2022.

Definitions, Terms and Abbreviations

90th percentile: For Lead and Copper testing. 10% of test results are above this level and 90% are below this level. **AL**: Action Level, or the concentration of a contaminant which, when exceeded, triggers treatment or other requirements which a water system must follow.

MCLG: Maximum Contaminant Level Goal, or the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCL: Maximum Contaminant Level, or the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MRDL: Maximum Residual Disinfectant Level, or the highest level of a disinfectant allowed in drinking water. There is convincing evidence that the addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG: Maximum Residual Disinfectant Level Goal, or the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: not applicable.

ND: not detectable at testing limits.

NTU: Nephelometric Turbidity Unit, used to measure cloudiness in drinking water.

pCi/L: picocuries per liter, a measure of radioactivity.

ppb: parts per billion or micrograms per liter.

ppm: parts per million or milligrams per liter.

RAA: Running Annual Average, or the average of sample analytical results for samples taken during the previous four calendar quarters.

Total Dissolved Solids (TDS): An overall indicator of the amount of minerals in the water.

What Does This Information Mean?

As you can see by the table, our system had no sample limit violations in 2022. We have learned through our testing that some contaminants have been detected; however, these contaminants were detected below New York State requirements.

Why Save Water? How To Avoid Wasting It.

Although our system has an adequate amount of water to meet present and future demands, there are several reasons why it is important to conserve water:

- Saving water saves energy and some of the costs associated with both of these necessities of life;
- Saving water reduces the cost of energy required to pump water and the need to construct costly new wells, pumping systems and water towers; and
- Saving water lessens the strain on the water system during a dry spell or drought, helping to avoid severe water use restrictions so that essential firefighting needs are met.

You can play a role in conserving water by becoming conscious of the amount of water your household is using, and by looking for ways to use less. More efficient water use protects our valuable natural resource and conservation is easy. Useful tips for conserving include:

- Turn off the tap when brushing your teeth.
- Consider water and energy-efficient appliances. Upgrade to EPA certified Energy Star and WaterSense appliances to save both on water and energy without sacrificing performance. The USEPA reports that EPA-certified Energy Star washing machines may use 35% less water per load.
- Check every faucet, toilet and showerhead in your home for leaks 10 percent of homes have leaks that waste 90 gallons or more per day; don't be part of the 10%.

Check your toilets for leaks by putting a few drops of food coloring in the tank, watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from one of these otherwise invisible toilet leaks. Fix it and save more than 30,000 gallons a year. More conservation tips and leak detection tools can be found at <u>www.libertyenergyandwater.com</u>.

Closing

Thank you for allowing us to continue to provide your family with quality drinking water this year. We ask that all our customers help us protect our water sources. For questions concerning this report call Liberty Customer Service at 1-877-426-6999 TDD:711; or on the web at <u>www.libertyenergyandwater.com</u>.

Liberty - New York Water 60 Brooklyn Avenue Merrick, NY 11566

Spanish	<i>French</i>
Este informe contiene información muy importante sobre su	Ce rapport contient des informations importantes sur votre eau
agua beber. Tradúzcalo ó hable con alguien que lo entienda	potable. Traduisez-le ou parlez en avec quelqu'un qui le comprend
bien.	bien.
Korean	Chinese
아리의 보고는 귀하께서 드시는 식수에 대한 중요한 정보가 포함되어 있습	這份教告念有非常重要有閑悠喝的水
니다. 번(역는 당45의 아니면, 이 보고를 읽고, 이러 한씨는 뿐나	內資料 清找崔耀匡份報告的人翻译
양,ⓒ타4기를 바랍니다.	或解釋於悠施

Listing of Non-Detected (ND) Contaminants – 2022 (Merrick Operations)

None of the following compounds that we analyzed for were detected in your drinking water at the respective method detection levels:

Microbiological:

E.coli Total Coliforms

Inorganics & Physical:

Ammonia as N Nitrite as N Perchlorate Surfactants (as MBAS)

Metals:

Antimony Arsenic Beryllium Cadmium Chromium Mercury Selenium Silver

Miscellaneous: Asbestos fibers

Volatile Organic Compounds (VOC's):

Benzene Bromobenzene Bromochloromethane Bromomethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroethane Chloromethane Chlorodifluoromethane 2-Chlorotoluene 4-Chlorotoluene Dibromomethane 1.2-Dichlorobenzene 1.3-Dichlorobenzene 1,4- Dichlorobenzene (Meta) Dichlorodifluormethane 1.1-Dichloroethane 1.2-Dichloroethane 1.1-Dichloroethane cis-1,2-Dichloroethene trans-1.2-Dichloroethene

1.2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadinene Isopropylbenzene 4-Isopropyltoluene Methyl Tert Butyl Ether (MTBE) Methylene Chloride (Dichloromethane) n-Propylbenzene Styrene 1.1.2-trichloro 1.2.2trifluoroethane 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene (PCE) Toluene 1.2.3-Trichlorobenzene 1,2,4-Trichlorobenzene 1.1.1-Trichloroethane 1.1.2-Trichloroethane Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene M-Xvlene O-Xylene P-Xylene Vinyl Chloride

Synthetic (Specific) Organic Compounds (SOC's) Regulated Group #1:

Alachlor Aldicarb Aldicarb Sulfone Aldicarb Sulfoxide Atrazine Carbofuran Chlordane, Total 1,2-Dibromo-3-Chloropropane (DBCP) 2,4-D Endrin 1,2-Dibromomethane (EDB) Heptachlor Heptachlor Epoxide Lindane Methoxychlor PCB's Pentachlorophenol Toxaphene 2.4.5-TP (Silvex)

Regulated Group #2:

Aldrin Benzo(a)pyrene Butachlor Carbarvl Dalapon Di (2-Ethylhexyl) adipate Di (2-Ethylhexyl) phthalalte Dicamba Dieldrin Dinoseb Diquat Endothall Glyphosate Hexachlorobenzene Hexachlorocyclopentadiene 3-Hydroxycarbofuran Methomyl Metolachlor Metribuzin Oxamyl (Vydate) Picloram Propachlor Simazine 2,3,7,8-TCDD (Dioxin)

Newly regulated

compounds Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS)

Unregulated compounds:

Perfluorobutanesulfonic acid (PFBS) Perfluoronononoic Acid (PFNA) Perfluorodeconoic Acid (PFDA) Perfluorohexanoic Acid (PFHxA)

Perfluoroheptanoic Acid (PFHpA) Perfluorododecanoic Acid (PFDoA) Perfluorohexanesulfonic acid (PFHxS) Perfluorotridecanoic Acid (PFTrDA) Perfluorotetradecanoic Acid (PFTA) Perfluoroundecanoic Acid (PFUnA) 11-Chloroeicosafluoro-3oxaundecane-1-sulfonic acid (11CI-PF3OUdS) 4:2 Fluorotelomer sulfonic acid (4:2 FTS) 6:2 Fluorotelomer sulfonic acid (6:2 FTS) 8:2 Fluorotelomer sulfonic acid (8:2 FTS) 9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS) 4.8-dioxa-3Hperfluorononanoic acid (ADONA) HFPO-DA (Gen-X) Nonafluoro-3,6dioxaheptanoic acid (NFDHA) Perfluorobutanoic acid (PFBA) Perfluoro(2ethoxyethane)sulphonic acid (PFEESA) Perfluoroheptane sulfonic acid (PFHpS) Perfluoro-4-methoxybutanoic acid (PFMBA) Perfluoro-3methoxypropanoic acid (PFMPÁ) Perfluoropentanoic acid (PFPeA) Perfluoropentane sulfonic acid (PFPeS)

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER Deferral Renewal Issued for 1,4-Dioxane to Liberty New York Water Merrick Operations District

Why are you receiving this notice/information?

You are receiving this notice because testing of our public water system found the chemical 1,4-Dioxane in your drinking water above New York State's maximum contaminant level (MCL) of 1 ppb for 1,4-dioxane. The MCLs are set well below levels known to cause health effects in animal studies. Therefore, consuming water with 1,4-dioxane at the level detected does not pose a significant health risk. Your water continues to be acceptable for all uses.

The Liberty New York Water Merrick Operations District has submitted, and the New York State Department of Health (Department) has issued, a deferral to Liberty. When a public water system is issued a deferral, the water system agrees to a schedule for corrective action and compliance with the new MCLs. In exchange, the Department

agrees to defer enforcement actions, such as assessing fines, if the water system is meeting the established deadlines. We are required to update the Department and the Nassau County Department of Health each calendar quarter on the status of our projects. If we do not meet the agreed upon deadlines, the Department can resume enforcement.

What are the health effects of 1,4-dioxane?

Laboratory studies show that 1,4-dioxane caused liver cancer in animals exposed at high levels throughout their lifetime. Other types of cancer have also been reported, although less consistently than liver cancer. There is no evidence of 1,4-dioxane cancer effects in humans. The United States Environmental Protection Agency considers 1,4- dioxane a likely human carcinogen based upon studies of animals exposed to high levels of this chemical over their entire lifetimes.

At the level of 1,4-dioxane detected in your water, exposure from drinking water and food preparation is well below 1,4-dioxane exposures associated with health effects.

What is New York State doing about 1,4-Dioxane in public drinking water?

The New York State Department of Health (NYS DOH) has adopted a drinking water regulation that requires all public water systems to test for 1,4-dioxane. If found above the MCLs, the water supplier must take steps to lower the level to meet the standard. Exceedances of the MCL signal that step should be taken by the water system to reduce contaminant levels.

What is being done to remove these contaminants?

Liberty New York Water is in the process of finalizing the contract for the construction of an advanced oxidation process (AOP) facility at its Seamans Neck Road Wells 3A and 4 facility. Iron Removal Facility (IRF) improvements are also being implemented at this well station, which are required in order for AOP treatment to be implemented. Regulatory review of two (2) booster pumping facilities needed to satisfy pressure requirements in the Seamans Neck Road vicinity is underway.

Liberty New York Water will operate the impacted wells in the Merrick Operations District in a last on first off sequence to the greatest extent practicable to minimize exposure to 1,4-Dioxane. Additional information will be shared as further testing and progress occurs. This process is similar for any chemical detected in public drinking water that requires mitigation. The compliance timetable will ensure that your drinking water will meet the MCL as rapidly as possible. The deferral is effective until August 25, 2023.

Where can I get more information?

For more information, please contact Liberty New York Water at (877) 426-6999 or 60 Brooklyn Avenue, Merrick, NY 11566. You can also contact the Nassau County Health Department at (516) 227-9697. If you have additional questions about these contaminants and your health, talk to your health care provider who is most familiar with your health history and can provide advice and assistance about understanding how drinking water may affect your personal health.

Public Water System ID# NY2902840 Date September 22, 2022

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER Exemption from 1,4-dioxane MCL

Why are you receiving this notice/information?

You are receiving this notice because testing of our public water system found the chemical 1,4-dioxane in the drinking water above New York State's maximum contaminant level (MCL) of 1 ppb for 1,4-dioxane. The MCLs are set well below levels known to cause health effects in animal studies. Therefore, consuming water with 1,4-dioxane at the level detected does not pose a significant health risk. Your water continues to be acceptable for all uses.

The Liberty New York Water, Merrick Operations District has requested, and the New York State Department of Health (Department) has conditionally granted, an exemption from the MCL for 1,4-dioxane. Exemptions are issued with mandatory compliance strategies which include control measures required by the Department. In exchange, the Department agrees to defer enforcement actions, such as assessing fines, if the water district is meeting the established deadlines. We are required to update the Department and the Nassau County Department of Health each calendar quarter on the status of our projects. If we do not meet the mandated compliance strategies, the Department can resume enforcement.

What are the health effects of 1,4-dioxane?

Laboratory studies show that 1,4-dioxane caused liver cancer in animals exposed at high levels throughout their lifetime. Other types of cancer have also been reported, although less consistently than liver cancer. There is no evidence of 1,4-dioxane cancer effects in humans. The United States Environmental Protection Agency considers 1,4-dioxane a likely human carcinogen based upon studies of animals exposed to high levels of this chemical over their entire lifetimes.

At the level of 1,4-dioxane detected in your water, exposure from drinking water and food preparation is well below 1,4-dioxane exposures associated with health effects.

What is New York State doing about 1,4-dioxane in public drinking water?

The New York State Department of Health has adopted a drinking water regulation that requires all public water systems to test for 1,4-dioxane. If found above the MCL of 1 ppb, the water supplier must take steps to lower the level to meet the standard. Exceedances of the MCL signal that steps should be taken by the water system to reduce contaminant levels.

What is being done to meet the MCL?

Liberty New York Water, Merrick Operations District is working with the Nassau County Department of Health on a compliance schedule that includes steps to reduce levels of 1,4-dioxane.

The effected wells within Liberty New York Water's Merrick District, which have 1,4-Dioxane levels above the MCL, are Wells 3A and 4 at the Seaman's Neck Road Plant. To remove 1,4-Dioxane from the water produced from these wells, Liberty New York Water is currently constructing an advanced oxidation process ("AOP") treatment facility at the Seamans Neck Road Plant. To supplement water supply to the Seamans Neck vicinity during construction of the AOP treatment system, Liberty will construct two (2) booster pumping stations within its system that will sustain water pressures to Seamans Neck vicinity customers. Liberty continues to promote conservation and reduced irrigation usage to its customers to both protect the health of our aquifers and reduce reliance on effected wells during peak irrigation demands.

Liberty New York Water will operate the impacted wells in the Merrick Operations District in a last on first off sequence to minimize their use. Additional information will be shared as further testing and progress occurs. This process is similar for any chemical detected in public drinking water that requires mitigation due to exceedance of an MCL. The compliance timetable will ensure that your drinking water will meet the MCL as rapidly as possible.

Where can I get more information?

For more information, please contact Liberty New York Water at (877) 426-6999 or by mail at 60 Brooklyn Avenue, Merrick, NY 11566. You can also contact the Nassau County Health Department at (516) 227-9697. Copies of the quarterly updates submitted to the Department and to Nassau County Department of Health will be available on Liberty Utility's New York Water website at <u>Emerging Compounds - New York Water - Residential (libertyutilities.com)</u>.

If you have additional questions about these contaminants and your health, talk to your health care provider who is most familiar with your health history and can provide advice and assistance about understanding how drinking water may affect your personal health.

Public Water System ID# NY2902840 Date August 31, 2023

Attachment C

Water Quality Data

P	Pace
1	575 Broad Hollow Road, Melville, NY 11747

Laboratory Results

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-07407

Lab No. : 70272838001

Type: Drinking Water Origin: Raw Well Routine

Liberty-NY - Merrick OPS 60 Brooklyn Avenue

Merrick, NY 11566

Attn To: Natasha Niola

Federal ID : 2902840 Collected : 10/04/2023 09:30 AM Received : 10/04/2023 12:36 PM

TEL: (516) 370-6000 FAX: (516) 886-5526

www.pacelabs.com

Point

N-07407 Location Jefferson 11 Well

Collected By CLIENT Sample Comments:

Samples were received on the same day of collection on ice and are above 6 degrees Celcius. Samples were placed on ice by the lab and the cooling process has begun.

Analytical Method: EPA 300.0							
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
Chloride	3.8		1	mg/L	250	10/05/2023 9:00 PM	001 BP4U1/1
Analytical Method: EPA 522		Prep Method:	EPA 522		Prep Date	10/06/2023 8:47 PM	
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Limit	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	<0.020		1	ug/L	1	10/09/2023 5:23 PM	001 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	94%		1	%REC		10/09/2023 5:23 PM	001 AG2R1/2
Analytical Method:EPA 524.2							
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,1,1-Trichloroethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,1,2,2-Tetrachloroethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,1,2-Trichloroethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,1,2-Trichlorotrifluoroethane	<0.50	N3,L2	1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,1-Dichloroethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,1-Dichloroethene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,1-Dichloropropene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,2,3-Trichlorobenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,2,3-Trichloropropane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,2,4-Trichlorobenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,2,4-Trimethylbenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,2-Dichlorobenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1.2-Dichloroethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,2-Dichloropropane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,3,5-Trimethylbenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,3-Dichlorobenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,3-Dichloropropane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
1,4-Dichlorobenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
2,2-Dichloropropane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
2-Chlorotoluene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
4-Chlorotoluene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Benzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Bromobenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Bromochloromethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Bromodichloromethane	<0.50 <0.50		1	ug/L	0	10/13/2023 12:54	001 VG9C1/2
Bromoform	<0.50 <0.50		1	ug/L		10/13/2023 12:54	001 VG9C1/2
	NO.00		I	ug/L		10/10/2020 12.04	001 00301/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting

limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).

Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

page 1 of 27

Jennifer Aracri Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-07407

Lab No. : 70272838001

Type: Drinking Water Origin: Raw Well Routine

Liberty-NY - Merrick OPS 60 Brooklyn Avenue

Merrick, NY 11566

Attn To: Natasha Niola

 Federal ID :
 2902840

 Collected :
 10/04/2023 09:30 AM
 Point
 N-07407

 Received :
 10/04/2023 12:36 PM
 Location
 Jefferson 11 Well

www.pacelabs.com

TEL: (516) 370-6000 FAX: (516) 886-5526

Collected By CLIENT

Sample Comments:

Samples were received on the same day of collection on ice and are above 6 degrees Celcius. Samples were placed on ice by the lab and the cooling process has begun.

Bromomethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Carbon tetrachloride	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Chlorobenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Chlorodifluoromethane	<0.50	N3,L2	1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Chloroethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Chloroform	<0.50		1	ug/L		10/13/2023 12:54	001 VG9C1/2
Chloromethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Dibromochloromethane	<0.50		1	ug/L		10/13/2023 12:54	001 VG9C1/2
Dibromomethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Dichlorodifluoromethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Ethylbenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Hexachloro-1,3-butadiene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Isopropylbenzene (Cumene)	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Methyl-tert-butyl ether	<0.50		1	ug/L	10	10/13/2023 12:54	001 VG9C1/2
Methylene Chloride	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Styrene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Tetrachloroethene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Toluene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Total Trihalomethanes (Calc.)	<0.50		1	ug/L	80	10/13/2023 12:54	001 VG9C1/2
Trichloroethene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Trichlorofluoromethane	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Vinyl chloride	<0.50		1	ug/L	2	10/13/2023 12:54	001 VG9C1/2
cis-1,2-Dichloroethene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
cis-1,3-Dichloropropene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
m&p-Xylene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
n-Butylbenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
n-Propylbenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
o-Xylene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
p-Isopropyltoluene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
sec-Butylbenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
tert-Butylbenzene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
trans-1,2-Dichloroethene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
trans-1,3-Dichloropropene	<0.50		1	ug/L	5	10/13/2023 12:54	001 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	83%		1	%REC		10/13/2023 12:54	001 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	88%		1	%REC		10/13/2023 12:54	001 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in

sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting

limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).

Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

page 2 of 27

Jennifer Aracri Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-10195

Lab No.: 70272838002

Type: Drinking Water Origin: Raw Well Routine

Liberty-NY - Merrick OPS 60 Brooklyn Avenue

TEL: (516) 370-6000 FAX: (516) 886-5526

Merrick, NY 11566

Attn To: Natasha Niola

 Federal ID:
 2902840

 Collected:
 10/04/2023 11:45 AM
 Point
 N-10195

 Received:
 10/04/2023 12:36 PM
 Location
 Jerusalem 5 Well

 Collected By
 CLIENT
 CLIENT
 Collected By
 CLIENT

www.pacelabs.com

Analytical Method: EPA 200.8							
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
Lead	<1.0		1	ug/L	15	10/06/2023 11:36	002 BP4N1/1
Thallium	<0.30		1	ug/L	2	10/06/2023 11:36	002 BP4N1/1
Analytical Method:EPA 300.0							
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
Chloride	16.6		1	mg/L	250	10/05/2023 9:12 PM	002 BP4U1/1
Analytical Method:EPA 522		Prep Method:	EPA 522		Prep Date	E 10/06/2023 8:47 PM	
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	0.19		1	ug/L	1	10/09/2023 5:40 PM	002 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	96%		1	%REC		10/09/2023 5:40 PM	002 AG2R1/2
Analytical Method: EPA 524.2							
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,1,1-Trichloroethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,1,2,2-Tetrachloroethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,1,2-Trichloroethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,1,2-Trichlorotrifluoroethane	<0.50	N3,L2	1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,1-Dichloroethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,1-Dichloroethene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,1-Dichloropropene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,2,3-Trichlorobenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,2,3-Trichloropropane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,2,4-Trichlorobenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,2,4-Trimethylbenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,2-Dichlorobenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1.2-Dichloroethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,2-Dichloropropane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,3,5-Trimethylbenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,3-Dichlorobenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,3-Dichloropropane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
1,4-Dichlorobenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
2,2-Dichloropropane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
2-Chlorotoluene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
4-Chlorotoluene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Benzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Bromobenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
2	-0.00		•	49, E	v		

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting

limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).

Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

page 3 of 27

Jennifer Aracri Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-10195

Lab No. : 70272838002

Type: Drinking Water Origin: Raw Well Routine

Liberty-NY - Merrick OPS 60 Brooklyn Avenue

TEL: (516) 370-6000 FAX: (516) 886-5526

Merrick, NY 11566 Attn To : Natasha Niola

 Federal ID:
 2902840

 Collected:
 10/04/2023 11:45 AM
 Point
 N-10195

 Received:
 10/04/2023 12:36 PM
 Location
 Jerusalem 5 Well

 Collected By
 CLIENT
 CLIENT
 Collected By
 CLIENT

www.pacelabs.com

Bromochloromethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Bromodichloromethane	<0.50		1	ug/L		10/13/2023 1:17 AM	002 VG9C1/2
Bromoform	<0.50		1	ug/L		10/13/2023 1:17 AM	002 VG9C1/2
Bromomethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Carbon tetrachloride	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Chlorobenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Chlorodifluoromethane	<0.50	N3,L2	1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Chloroethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Chloroform	<0.50		1	ug/L		10/13/2023 1:17 AM	002 VG9C1/2
Chloromethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Dibromochloromethane	<0.50		1	ug/L		10/13/2023 1:17 AM	002 VG9C1/2
Dibromomethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Dichlorodifluoromethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Ethylbenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Hexachloro-1,3-butadiene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Isopropylbenzene (Cumene)	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Methyl-tert-butyl ether	<0.50		1	ug/L	10	10/13/2023 1:17 AM	002 VG9C1/2
Methylene Chloride	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Styrene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Tetrachloroethene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Toluene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Total Trihalomethanes (Calc.)	<0.50		1	ug/L	80	10/13/2023 1:17 AM	002 VG9C1/2
Trichloroethene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Trichlorofluoromethane	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Vinyl chloride	<0.50		1	ug/L	2	10/13/2023 1:17 AM	002 VG9C1/2
cis-1,2-Dichloroethene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
cis-1,3-Dichloropropene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
m&p-Xylene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
n-Butylbenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
n-Propylbenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
o-Xylene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
p-Isopropyltoluene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
sec-Butylbenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
tert-Butylbenzene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
trans-1,2-Dichloroethene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
trans-1,3-Dichloropropene	<0.50		1	ug/L	5	10/13/2023 1:17 AM	002 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	88%		1	%REC		10/13/2023 1:17 AM	002 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	86%		1	%REC		10/13/2023 1:17 AM	002 VG9C1/2

Qualifiers:

- sample preparation, dilution of the sample aliquot, or moisture content.
- ND Not Detected at or above adjusted reporting limit.
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting
- limit.Estimated value below calibration range
- U Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).

Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

page 4 of 27

Jennifer Aracri Test results meet the requirements of NELAC unless otherwise noted.

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in

575 Broad Hollow Road, Melville, NY 11747 TEL: (516) 370-6000 FAX: (516) 886-5526 www.pacelabs.com

WorkOrder :

70272838

Laboratory Certifications

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: 10478 Primary Accrediting Body Pennsylvania Certification #: 10478 Primary Accrediting Body Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340 Virginia Certification # 460302

575 Broad Hollow Road, Melville, NY 11747 TEL: (516) 370-6000 FAX: (516) 886-5526 <u>www.pacelabs.com</u>

WorkOrder :

70272838

Additional Qualifiers

L2 - Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

N3 - Accreditation is not offered by the relevant laboratory accrediting body for this parameter.

October 19, 2023

Jennifer Aracri Pace Analytical Services - Long Island, NY 575 Broad Hollow Road Melville, NY 11747

Project Location: 1,4DIOXANE/POC/PFAS/CL 10/4 Client Job Number: Project Number: 70272838 Laboratory Work Order Number: 23J1227

Enclosed are results of analyses for samples as received by the laboratory on October 10, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

and the second

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
23J1227-01	5
23J1227-02	6
Sample Preparation Information	7
QC Data	8
Semivolatile Organic Compounds by - LC/MS-MS	8
B354785	8
B354916	10
Flag/Qualifier Summary	14
Certifications	15
Chain of Custody/Sample Receipt	16

Pace Analytical Services - Long Island, NY 575 Broad Hollow Road Melville, NY 11747 ATTN: Jennifer Aracri

REPORT DATE: 10/19/2023

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 70272838

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23J1227

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1,4DIOXANE/POC/PFAS/CL 10/4

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
N-07407	23J1227-01	Drinking Water		EPA 533	
N-10195	23J1227-02	Drinking Water		EPA 533	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 533

Qualifications:

S-29

Extracted Internal Standard is outside of control limits.

Analyte & Samples(s) Qualified:

M2-8:2FTS S094897-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan S. Kelley

Meghan E. Kelley Reporting Specialist

Project Location: 1,4DIOXANE/POC/PFAS/CL 10/

Date Received: 10/10/2023

Field Sample #: N-07407

Sample ID: 23J1227-01

Sample Matrix: Drinking Water

Sampled: 10/4/2023 09:30

Sample Description:

		Semivolatile (Organic Co	mpounds by - I	LC/MS-MS				
		MCL/SMCL					Date	Date/Time	
Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Ana

Work Order: 23J1227

			inceronice				Date	Date/ Thie	
Analyte	Results	RL	MA ORSG Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluoropentanoic acid (PFPeA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluorohexanoic acid (PFHxA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
11Cl-PF3OUdS (F53B Major)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
9Cl-PF3ONS (F53B Minor)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluoropentanesulfonic acid (PFPeS)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluorooctanoic acid (PFOA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2
Perfluorononanoic acid (PFNA)	ND	1.8	ng/L	1		EPA 533	10/13/23	10/16/23 12:08	JR2

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
M2-4:2FTS	62.9	50-200		10/16/23 12:08
M2-8:2FTS	111	50-200		10/16/23 12:08
MPFBA	86.1	50-200		10/16/23 12:08
M3HFPO-DA	93.0	50-200		10/16/23 12:08
M6PFDA	75.5	50-200		10/16/23 12:08
M3PFBS	74.6	50-200		10/16/23 12:08
M7PFUnA	72.7	50-200		10/16/23 12:08
M2-6:2FTS	90.2	50-200		10/16/23 12:08
M5PFPeA	86.8	50-200		10/16/23 12:08
M5PFHxA	75.0	50-200		10/16/23 12:08
M3PFHxS	80.4	50-200		10/16/23 12:08
M4PFHpA	78.0	50-200		10/16/23 12:08
M8PFOA	78.7	50-200		10/16/23 12:08
M8PFOS	76.6	50-200		10/16/23 12:08
M9PFNA	76.5	50-200		10/16/23 12:08
MPFDoA	68.8	50-200		10/16/23 12:08

Project Location: 1,4DIOXANE/POC/PFAS/CL 10/

Date Received: 10/10/2023

Field Sample #: N-10195

Sample ID: 23J1227-02

Sample Matrix: Drink

Sampled:	10/4/2023	11:45
Sumpreu.	10/ 1/2020	11.10

Sample Description:

Sample Matrix: Drinking Water										
			Semivolatile (Organic Co	mpounds by - l	LC/MS-MS				
			MCL/SMCL					Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	1.7		ng/L	1		EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluorobutanesulfonic acid (PFBS)	ND	1.7		ng/L	1		EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluoropentanoic acid (PFPeA)	ND	1.7		ng/L	1		EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluorohexanoic acid (PFHxA)	ND	1.7		ng/L	1		EPA 533	10/17/23	10/18/23 15:41	QNW
11Cl-PF3OUdS (F53B Major)	ND	1.7		ng/L	1		EPA 533	10/17/23	10/18/23 15:41	QNW
9Cl-PF3ONS (F53B Minor)	ND	1.7		ng/L	1		EPA 533	10/17/23	10/18/23 15:41	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7		ng/L	1		EPA 533	10/17/23	10/18/23 15:41	QNW

Work Order: 23J1227

			8	-				X
9Cl-PF3ONS (F53B Minor)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluorodecanoic acid (PFDA)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluorododecanoic acid (PFDoA)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluorohexanesulfonic acid (PFHxS)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluoropentanesulfonic acid (PFPeS)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluoroundecanoic acid (PFUnA)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluoroheptanoic acid (PFHpA)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluorooctanoic acid (PFOA)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluorooctanesulfonic acid (PFOS)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW
Perfluorononanoic acid (PFNA)	ND	1.7	ng/L	1	EPA 533	10/17/23	10/18/23 15:41	QNW

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
M2-4:2FTS	64.2	50-200		10/18/23 15:41
M2-8:2FTS	81.3	50-200		10/18/23 15:41
MPFBA	86.3	50-200		10/18/23 15:41
M3HFPO-DA	81.0	50-200		10/18/23 15:41
M6PFDA	63.2	50-200		10/18/23 15:41
M3PFBS	95.8	50-200		10/18/23 15:41
M7PFUnA	62.0	50-200		10/18/23 15:41
M2-6:2FTS	85.7	50-200		10/18/23 15:41
M5PFPeA	84.4	50-200		10/18/23 15:41
M5PFHxA	79.0	50-200		10/18/23 15:41
M3PFHxS	92.4	50-200		10/18/23 15:41
M4PFHpA	72.8	50-200		10/18/23 15:41
M8PFOA	71.3	50-200		10/18/23 15:41
M8PFOS	77.9	50-200		10/18/23 15:41
M9PFNA	64.6	50-200		10/18/23 15:41
MPFDoA	64.1	50-200		10/18/23 15:41

Sample Extraction Data

Prep Method:EPA 533 Analytical Method:EPA 533

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
23J1227-02RE1 [N-10195]	B354785	290	1.00	10/17/23	
Prep Method:EPA 533 Analytical Method:EPA 533					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
23J1227-01 [N-07407]	B354916	281	1.00	10/13/23	

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B354785 - EPA 533										
Blank (B354785-BLK1)				Prepared: 10)/17/23 Anal	yzed: 10/18/2	23			
Perfluorobutanoic acid (PFBA)	ND	1.9	ng/L							
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	1.9	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	1.9	ng/L							
11Cl-PF3OUdS (F53B Major)	ND	1.9	ng/L							
9Cl-PF3ONS (F53B Minor)	ND	1.9	ng/L							
4,8-Dioxa-3H-perfluorononanoic acid	ND	1.9	ng/L							
(ADONA) Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	ng/L							
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.9	ng/L							
Perfluorodecanoic acid (PFDA)	ND	1.9	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	1.9	ng/L							
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.9	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.9	ng/L							
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.9	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	ng/L							
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.9	ng/L							
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.9	ng/L							
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.9	ng/L							
Perfluoropentanesulfonic acid (PFPeS)	ND	1.9	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	1.9	ng/L							
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA) Perfluoroheptanoic acid (PFHpA)	ND	1.9 1.9	ng/L ng/L							
Perfluorooctanoic acid (PFOA)	ND	1.9	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	ng/L							
Perfluorononanoic acid (PFNA)	ND ND	1.9	ng/L							
		1.9								
Surrogate: M2-4:2FTS	29.1		ng/L	35.2		82.8	50-200			
Surrogate: M2-8:2FTS Surrogate: MPFBA	37.9 35.3		ng/L ng/L	36.0 37.5		105 94.3	50-200 50-200			
Surrogate: M3HFPO-DA	36.6		ng/L ng/L	37.5		94.3 97.7	50-200 50-200			
Surrogate: M6PFDA	36.3		ng/L	37.5		96.7	50-200			
Surrogate: M3PFBS	34.6		ng/L	34.9		98.9	50-200			
Surrogate: M7PFUnA	36.6		ng/L	37.5		97.7	50-200			
Surrogate: M2-6:2FTS	35.9		ng/L	35.6		101	50-200			
Surrogate: M5PFPeA	34.8		ng/L	37.5		92.8	50-200			
Surrogate: M5PFHxA	35.3		ng/L	37.5		94.1	50-200			
Surrogate: M3PFHxS	34.2		ng/L	35.5		96.2	50-200			
Surrogate: M4PFHpA	35.4		ng/L	37.5		94.4	50-200			
Surrogate: M8PFOA	35.9		ng/L	37.5		95.8	50-200			
Surrogate: M8PFOS	33.8		ng/L	35.9		94.1	50-200			
Surrogate: M9PFNA	35.6		ng/L	37.5		95.1	50-200			
Surrogate: MPFDoA	35.0		ng/L	37.5 Proparad: 10)/17/22 Am-1	93.4	50-200			
LCS (B354785-BS1) Parfluarabutanaia aaid (PEPA)		1.0	nc/I		0/17/23 Anal	-				
Perfluorobutanoic acid (PFBA)	8.23	1.9	ng/L	9.53		86.3	70-130			
Perfluorobutanesulfonic acid (PFBS)	6.86	1.9	ng/L	8.44		81.3	70-130			
Perfluoropentanoic acid (PFPeA)	8.19	1.9	ng/L	9.53		85.9 86.5	70-130			
Perfluorohexanoic acid (PFHxA) 11Cl-PF3OUdS (F53B Major)	8.24	1.9 1.9	ng/L ng/I	9.53 8.08		86.5	70-130			
9CI-PF3ONS (F53B Minor)	8.25 7.74	1.9	ng/L ng/L	8.98 8.88		91.9 87.1	70-130 70-130			
	/./4	1.7		0.00		57.1	, 5 1 5 0			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	Kesuit	Liiiit	Units	Level	Result	70KEC	Linits	Kr D	Liiiit	INDICS
Batch B354785 - EPA 533										
LCS (B354785-BS1)					0/17/23 Analy	/zed: 10/18/2	23			
4,8-Dioxa-3H-perfluorononanoic acid	8.04	1.9	ng/L	8.98		89.5	70-130			
(ADONA) Hexafluoropropylene oxide dimer acid	9.44	1.9	ng/L	9.53		99.0	70-130			
(HFPO-DA)	7.44		1.9.12	1.55		<i>))</i> .0	/0-150			
8:2 Fluorotelomersulfonic acid (8:2FTS A)	7.73	1.9	ng/L	9.15		84.5	70-130			
Perfluorodecanoic acid (PFDA)	7.98	1.9	ng/L	9.53		83.7	70-130			
Perfluorododecanoic acid (PFDoA)	8.43	1.9	ng/L	9.53		88.5	70-130			
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	7.92	1.9	ng/L	8.48		93.3	70-130			
Perfluoroheptanesulfonic acid (PFHpS)	7.79	1.9	ng/L	9.10		85.6	70-130			
4:2 Fluorotelomersulfonic acid (4:2FTS A)	8.35	1.9	ng/L	8.91		93.7	70-130			
Perfluorohexanesulfonic acid (PFHxS)	7.77	1.9	ng/L	8.72		89.1	70-130			
Perfluoro-4-oxapentanoic acid (PFMPA)	7.89	1.9	ng/L	9.53		82.8	70-130			
Perfluoro-5-oxahexanoic acid (PFMBA)	8.66	1.9	ng/L	9.53		90.8	70-130			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	8.80	1.9	ng/L	9.05		97.1	70-130			
Perfluoropentanesulfonic acid (PFPeS)	7.88	1.9	ng/L	8.96		88.0	70-130			
Perfluoroundecanoic acid (PFUnA)	8.06	1.9	ng/L	9.53		84.6	70-130			
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	8.38	1.9	ng/L	9.53		87.9	70-130			
Perfluoroheptanoic acid (PFHpA)	9.04	1.9	ng/L	9.53		94.9	70-130			
Perfluorooctanoic acid (PFOA)	8.26	1.9	ng/L	9.53		86.6	70-130			
Perfluorooctanesulfonic acid (PFOS)	8.04	1.9	ng/L	8.82		91.2	70-130			
Perfluorononanoic acid (PFNA)	7.82	1.9	ng/L	9.53		82.1	70-130			
Surrogate: M2-4:2FTS	30.3		ng/L	35.8		84.7	50-200			
Surrogate: M2-8:2FTS	44.3		ng/L	36.6		121	50-200			
Surrogate: MPFBA	39.4		ng/L	38.1		103	50-200			
Surrogate: M3HFPO-DA	38.4		ng/L	38.1		101	50-200			
Surrogate: M6PFDA	39.0		ng/L	38.1		102	50-200			
Surrogate: M3PFBS	37.5		ng/L	35.5		106	50-200			
Surrogate: M7PFUnA	39.7		ng/L	38.1		104	50-200			
Surrogate: M2-6:2FTS	38.6		ng/L	36.3		107	50-200			
Surrogate: M5PFPeA	38.9		ng/L	38.1		102	50-200			
Surrogate: M5PFHxA Surrogate: M3PFHxS	39.4 36.9		ng/L ng/I	38.1		103 102	50-200 50-200			
e e	36.9 38.2		ng/L ng/I	36.1 38.1		102	50-200 50-200			
Surrogate: M4PFHpA Surrogate: M8PFOA	38.2 40.5		ng/L ng/L	38.1		100	50-200 50-200			
Surrogate: M8PFOS	40.5 36.5		ng/L	36.6		99.8	50-200			
Surrogate: M9PFNA	38.2		ng/L	38.1		100	50-200 50-200			
Surrogate: MPFDoA	37.9		ng/L	38.1		99.3	50-200			
LCS Dup (B354785-BSD1)				Prepared: 10)/17/23 Analy	yzed: 10/18/2	23			
Perfluorobutanoic acid (PFBA)	9.07	1.9	ng/L	9.51		95.4	70-130	9.69	30	
Perfluorobutanesulfonic acid (PFBS)	7.65	1.9	ng/L	8.42		90.9	70-130	11.0	30	
Perfluoropentanoic acid (PFPeA)	9.00	1.9	ng/L	9.51		94.7	70-130	9.46	30	
Perfluorohexanoic acid (PFHxA)	9.08	1.9	ng/L	9.51		95.5	70-130	9.65	30	
11Cl-PF3OUdS (F53B Major)	8.37	1.9	ng/L	8.96		93.4	70-130	1.38	30	
PCI-PF3ONS (F53B Minor)	8.08	1.9	ng/L	8.86		91.2	70-130	4.32	30	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	8.51	1.9	ng/L	8.96		95.0	70-130	5.69	30	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	9.54	1.9	ng/L	9.51		100	70-130	1.12	30	
8:2 Fluorotelomersulfonic acid (8:2FTS A)	9.14	1.9	ng/L	9.13		100	70-130	16.7	30	
Perfluorodecanoic acid (PFDA)	8.40	1.9	ng/L	9.51		88.4	70-130	5.20	30	
Perfluorododecanoic acid (PFDoA)	8.54	1.9	ng/L	9.51		89.8	70-130	1.32	30	

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B354785 - EPA 533										
LCS Dup (B354785-BSD1)				Prepared: 10)/17/23 Analy	yzed: 10/18/2	23			
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	8.58	1.9	ng/L	8.46		101	70-130	8.11	30	
Perfluoroheptanesulfonic acid (PFHpS)	7.88	1.9	ng/L	9.08		86.8	70-130	1.11	30	
4:2 Fluorotelomersulfonic acid (4:2FTS A)	9.17	1.9	ng/L	8.89		103	70-130	9.33	30	
Perfluorohexanesulfonic acid (PFHxS)	8.73	1.9	ng/L	8.70		100	70-130	11.6	30	
Perfluoro-4-oxapentanoic acid (PFMPA)	8.59	1.9	ng/L	9.51		90.4	70-130	8.57	30	
Perfluoro-5-oxahexanoic acid (PFMBA)	9.51	1.9	ng/L	9.51		100	70-130	9.38	30	
6:2 Fluorotelomersulfonic acid (6:2FTS A)	9.57	1.9	ng/L	9.03		106	70-130	8.46	30	
Perfluoropentanesulfonic acid (PFPeS)	8.57	1.9	ng/L	8.94		95.9	70-130	8.42	30	
Perfluoroundecanoic acid (PFUnA)	8.92	1.9	ng/L	9.51		93.9	70-130	10.2	30	
Nonafluoro-3,6-dioxaheptanoic acid NFDHA)	9.33	1.9	ng/L	9.51		98.2	70-130	10.7	30	
Perfluoroheptanoic acid (PFHpA)	9.62	1.9	ng/L	9.51		101	70-130	6.21	30	
Perfluorooctanoic acid (PFOA)	9.25	1.9	ng/L	9.51		97.3	70-130	11.3	30	
Perfluorooctanesulfonic acid (PFOS)	8.42	1.9	ng/L	8.80		95.7	70-130	4.50	30	
Perfluorononanoic acid (PFNA)	8.11	1.9	ng/L	9.51		85.3	70-130	3.61	30	
Surrogate: M2-4:2FTS	28.6		ng/L	35.7		80.3	50-200			
Surrogate: M2-8:2FTS	35.5		ng/L	36.5		97.3	50-200			
Surrogate: MPFBA	34.9		ng/L	38.0		91.7	50-200			
Surrogate: M3HFPO-DA	33.4		ng/L	38.0		87.8	50-200			
Surrogate: M6PFDA	34.6		ng/L	38.0		91.1	50-200			
Surrogate: M3PFBS	35.0		ng/L	35.4		98.7	50-200			
Surrogate: M7PFUnA	32.9		ng/L	38.0		86.5	50-200			
Surrogate: M2-6:2FTS	32.2		ng/L	36.2		88.9	50-200			
Surrogate: M5PFPeA	34.2		ng/L	38.0		89.9	50-200			
Surrogate: M5PFHxA	34.5		ng/L	38.0		90.7	50-200			
Surrogate: M3PFHxS	34.6		ng/L	36.1		96.0	50-200			
Surrogate: M4PFHpA	34.8		ng/L	38.0		91.6	50-200			
Surrogate: M8PFOA	35.6		ng/L	38.0		93.6	50-200			
Surrogate: M8PFOS	35.4		ng/L	36.5		97.2	50-200			
Surrogate: M9PFNA	33.8		ng/L	38.0		88.8	50-200			
Surrogate: MPFDoA	32.8		ng/L	38.0		86.2	50-200			

Batch B354916 - EPA 533

Blank (B354916-BLK1)				Prepared: 10/13/23 Analyzed: 10/16/23
Perfluorobutanoic acid (PFBA)	ND	1.8	ng/L	
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L	
Perfluoropentanoic acid (PFPeA)	ND	1.8	ng/L	
Perfluorohexanoic acid (PFHxA)	ND	1.8	ng/L	
11Cl-PF3OUdS (F53B Major)	ND	1.8	ng/L	
9Cl-PF3ONS (F53B Minor)	ND	1.8	ng/L	
4,8-Dioxa-3H-perfluorononanoic acid	ND	1.8	ng/L	
(ADONA)				
Hexafluoropropylene oxide dimer acid	ND	1.8	ng/L	
(HFPO-DA)		1.0	/T	
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	ng/L	
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L	
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L	
Perfluoro(2-ethoxyethane)sulfonic acid	ND	1.8	ng/L	
(PFEESA)				
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.8	ng/L	
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	ng/L	
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L	

Analvte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Analyte	Kesun	Limit	Units	Level	Kesun	%REC	Limits	KPD	Limit	Notes
Batch B354916 - EPA 533										
Blank (B354916-BLK1)				Prepared: 10)/13/23 Analy	yzed: 10/16/2	23			
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L							
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L							
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8	ng/L							
Perfluoropentanesulfonic acid (PFPeS)	ND	1.8	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L							
Nonafluoro-3,6-dioxaheptanoic acid NFDHA)	ND	1.8	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L							
Perfluorooctanoic acid (PFOA)	ND	1.8	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L							
Perfluorononanoic acid (PFNA)	ND	1.8	ng/L							
Surrogate: M2-4:2FTS	26.3		ng/L	34.2		77.0	50-200			
Surrogate: M2-8:2FTS	47.2		ng/L	35.0		135	50-200			
Surrogate: MPFBA	36.8		ng/L	36.4		101	50-200			
Surrogate: M3HFPO-DA	36.4		ng/L	36.4		100	50-200			
Surrogate: M6PFDA	35.0		ng/L	36.4		96.2	50-200			
Surrogate: M3PFBS	30.7		ng/L	34.0		90.5	50-200			
Surrogate: M7PFUnA	33.5		ng/L	36.4		91.8	50-200			
Surrogate: M2-6:2FTS	35.5		ng/L	34.7		102	50-200			
Surrogate: M5PFPeA	37.1		ng/L	36.4		102	50-200			
Surrogate: M5PFHxA	32.7		ng/L	36.4		89.9	50-200			
Surrogate: M3PFHxS	32.6		ng/L	34.5		94.5	50-200			
urrogate: M4PFHpA	34.0		ng/L	36.4		93.4	50-200			
urrogate: M8PFOA	34.8		ng/L	36.4		95.4	50-200			
Surrogate: M8PFOS	33.0		ng/L	34.9		94.4	50-200			
urrogate: M9PFNA	33.6		ng/L	36.4		92.1	50-200			
Surrogate: MPFDoA	31.7		ng/L	36.4		87.0	50-200			
LCS (B354916-BS1)				Prepared: 10	0/13/23 Analy	yzed: 10/16/2	23			
Perfluorobutanoic acid (PFBA)	1.63	1.8	ng/L	1.77		92.3	50-150			
Perfluorobutanesulfonic acid (PFBS)	1.28	1.8	ng/L	1.56		82.1	50-150			
Perfluoropentanoic acid (PFPeA)	1.46	1.8	ng/L	1.77		82.8	50-150			
Perfluorohexanoic acid (PFHxA)	1.47	1.8	ng/L	1.77		83.4	50-150			
1Cl-PF3OUdS (F53B Major)	1.11	1.8	ng/L	1.66		66.7	50-150			
PCI-PF3ONS (F53B Minor)	1.18	1.8	ng/L	1.65		71.9	50-150			
4,8-Dioxa-3H-perfluorononanoic acid ADONA)	1.63	1.8	ng/L	1.66		97.8	50-150			
Hexafluoropropylene oxide dimer acid HFPO-DA)	1.68	1.8	ng/L	1.77		95.3	50-150			
3:2 Fluorotelomersulfonic acid (8:2FTS A)	1.35	1.8	ng/L	1.70		79.6	50-150			
Perfluorodecanoic acid (PFDA)	1.31	1.8	ng/L	1.77		74.1	50-150			
Perfluorododecanoic acid (PFDoA)	1.37	1.8	ng/L	1.77		77.8	50-150			
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	1.26	1.8	ng/L	1.57		80.1	50-150			
Perfluoroheptanesulfonic acid (PFHpS)	1.46	1.8	ng/L	1.69		86.7	50-150			
:2 Fluorotelomersulfonic acid (4:2FTS A)	1.41	1.8	ng/L	1.65		85.2	50-150			
Perfluorohexanesulfonic acid (PFHxS)	1.42	1.8	ng/L	1.62		87.9	50-150			
Perfluoro-4-oxapentanoic acid (PFMPA)	1.53	1.8	ng/L	1.77		86.3	50-150			
Perfluoro-5-oxahexanoic acid (PFMBA)	1.45	1.8	ng/L	1.77		81.9	50-150			
:2 Fluorotelomersulfonic acid (6:2FTS A)	1.50	1.8	ng/L	1.68		89.1	50-150			
Perfluoropentanesulfonic acid (PFPeS)	1.23	1.8	ng/L	1.66		74.2	50-150			
Perfluoroundecanoic acid (PFUnA)	1.45	1.8	ng/L	1.77		81.9	50-150			
Nonafluoro-3,6-dioxaheptanoic acid	1.49	1.8	ng/L	1.77		84.6	50-150			

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B354916 - EPA 533										
.CS (B354916-BS1)				Prepared: 10)/13/23 Analy	zed: 10/16/2	23			
erfluoroheptanoic acid (PFHpA)	1.67	1.8	ng/L	1.77		94.6	50-150			
erfluorooctanoic acid (PFOA)	1.76	1.8	ng/L	1.77		99.8	50-150			
Perfluorooctanesulfonic acid (PFOS)	1.42	1.8	ng/L	1.63		86.7	50-150			
erfluorononanoic acid (PFNA)	1.31	1.8	ng/L	1.77		74.1	50-150			
urrogate: M2-4:2FTS	22.0		ng/L	33.1		66.3	50-200			
urrogate: M2-8:2FTS	57.8		ng/L	33.9		170	50-200			
urrogate: MPFBA	31.5		ng/L	35.3		89.1	50-200			
urrogate: M3HFPO-DA	30.8		ng/L	35.3		87.2	50-200			
urrogate: M6PFDA	31.4		ng/L	35.3		89.0	50-200			
urrogate: M3PFBS	25.4		ng/L	32.9		77.1	50-200			
urrogate: M7PFUnA	29.3		ng/L	35.3		83.0	50-200			
urrogate: M2-6:2FTS	35.0		ng/L	33.6		104	50-200			
urrogate: M5PFPeA	32.0		ng/L	35.3		90.6	50-200			
urrogate: M5PFHxA	28.5		ng/L	35.3		80.8	50-200			
urrogate: M3PFHxS	27.4		ng/L	33.5		81.7	50-200			
urrogate: M4PFHpA	29.5		ng/L	35.3		83.6	50-200			
urrogate: M8PFOA	29.3		ng/L	35.3		83.0	50-200			
urrogate: M8PFOS	27.7		ng/L	33.9		81.6	50-200			
urrogate: M9PFNA	29.7		ng/L	35.3		84.1	50-200			
urrogate: MPFDoA	27.4		ng/L	35.3		77.5	50-200			
CS Dup (B354916-BSD1)				Prepared: 10)/13/23 Analy	zed: 10/16/2	23			
erfluorobutanoic acid (PFBA)	1.45	1.8	ng/L	1.79		81.1	50-150	11.7	50	
erfluorobutanesulfonic acid (PFBS)	1.30	1.8	ng/L	1.58		82.4	50-150	1.61	50	
erfluoropentanoic acid (PFPeA)	1.42	1.8	ng/L	1.79		79.2	50-150	3.16	50	
erfluorohexanoic acid (PFHxA)	1.51	1.8	ng/L	1.79		84.2	50-150	2.18	50	
1Cl-PF3OUdS (F53B Major)	1.25	1.8	ng/L	1.69		74.4	50-150	12.2	50	
Cl-PF3ONS (F53B Minor)	1.23	1.8	ng/L	1.67		73.9	50-150	4.09	50	
8-Dioxa-3H-perfluorononanoic acid	1.59	1.8	ng/L	1.69		94.6	50-150	2.07	50	
ADONA) lexafluoropropylene oxide dimer acid		1.8	ng/L	1.79		114	50-150	19.2	50	
HFPO-DA)	2.04	1.0	115/12	1.79		114	50-150	19.2	50	
2 Fluorotelomersulfonic acid (8:2FTS A)	1.33	1.8	ng/L	1.72		77.5	50-150	1.30	50	
erfluorodecanoic acid (PFDA)	1.36	1.8	ng/L	1.79		76.3	50-150	4.26	50	
erfluorododecanoic acid (PFDoA)	1.39	1.8	ng/L	1.79		77.6	50-150	1.04	50	
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	1.28	1.8	ng/L	1.59		80.2	50-150	1.31	50	
erfluoroheptanesulfonic acid (PFHpS)	1.46	1.8	ng/L	1.71		85.6	50-150	0.0715	50	
2 Fluorotelomersulfonic acid (4:2FTS A)	1.40	1.8	ng/L	1.67		80.9	50-150	3.88	50	
erfluorohexanesulfonic acid (PFHxS)	1.33	1.8	ng/L	1.64		91.1	50-150	4.94	50	
erfluoro-4-oxapentanoic acid (PFMPA)	1.49	1.8	ng/L	1.79		82.6	50-150	3.20	50	
erfluoro-5-oxahexanoic acid (PFMBA)	1.48	1.8	ng/L	1.79		82.3	50-150	1.81	50	
2 Fluorotelomersulfonic acid (6:2FTS A)	1.47	1.8	ng/L	1.70		86.3	50-150	1.96	50	
erfluoropentanesulfonic acid (PFPeS)	1.47	1.8	ng/L	1.68		86.8	50-150	16.9	50	
erfluoroundecanoic acid (PFUnA)	1.40	1.8	ng/L	1.79		82.0	50-150	1.44	50	
Ionafluoro-3,6-dioxaheptanoic acid	1.47	1.8	ng/L	1.79		82.0 84.9	50-150	1.44	30 50	
VFDHA)	1.52	1.0	11 <u>6</u> /12	1./7		07.7	50-150	1.04	50	
erfluoroheptanoic acid (PFHpA)	1.65	1.8	ng/L	1.79		92.4	50-150	1.07	50	
erfluorooctanoic acid (PFOA)	1.88	1.8	ng/L	1.79		105	50-150	6.52	50	
erfluorooctanesulfonic acid (PFOS)	1.54	1.8	ng/L	1.65		92.8	50-150	8.08	50	
erfluorononanoic acid (PFNA)	1.47	1.8	ng/L	1.79		82.2	50-150	11.7	50	
urrogate: M2-4:2FTS	23.5		ng/L	33.6		70.2	50-200			
urrogate: M2-8:2FTS	42.1		ng/L	34.3		122	50-200			
urrogate: MPFBA	31.2		ng/L	35.8		87.3	50-200			

Analyte	Result	Reporting Limit Uni	Spike ts Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B354916 - EPA 533									
LCS Dup (B354916-BSD1)			Prepared:	10/13/23 Anal	yzed: 10/16/2	23			
Surrogate: M3HFPO-DA	28.1	ng/	35.8		78.6	50-200			
Surrogate: M6PFDA	30.1	ng/	35.8		84.1	50-200			
Surrogate: M3PFBS	26.6	ng/	33.3		79.9	50-200			
Surrogate: M7PFUnA	30.0	ng/	35.8		83.8	50-200			
Surrogate: M2-6:2FTS	32.3	ng/	34.0		95.1	50-200			
Surrogate: M5PFPeA	31.3	ng/	35.8		87.4	50-200			
Surrogate: M5PFHxA	28.3	ng/	35.8		79.2	50-200			
Surrogate: M3PFHxS	28.8	ng/	33.9		85.0	50-200			
Surrogate: M4PFHpA	29.5	ng/	35.8		82.4	50-200			
Surrogate: M8PFOA	30.0	ng/	35.8		83.8	50-200			
Surrogate: M8PFOS	28.7	ng/	34.3		83.7	50-200			
Surrogate: M9PFNA	29.3	ng/	35.8		82.0	50-200			
Surrogate: MPFDoA	28.9	ng/	35.8		80.7	50-200			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
Ť	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.

S-29 Extracted Internal Standard is outside of control limits.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 533 in Drinking Water	
Perfluorobutanoic acid (PFBA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorobutanesulfonic acid (PFBS)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoropentanoic acid (PFPeA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorohexanoic acid (PFHxA)	NH,NY,VT-DW,ME,NJ,PA,CT
11Cl-PF3OUdS (F53B Major)	NH,NY,VT-DW,ME,NJ,PA,CT
9Cl-PF3ONS (F53B Minor)	NH,NY,VT-DW,ME,NJ,PA,CT
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NH,NY,VT-DW,ME,NJ,PA,CT
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH,NY,VT-DW,ME,NJ,PA,CT
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorodecanoic acid (PFDA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorododecanoic acid (PFDoA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoroheptanesulfonic acid (PFHpS)	NH,NY,VT-DW,ME,NJ,PA,CT
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorohexanesulfonic acid (PFHxS)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoro-4-oxapentanoic acid (PFMPA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoro-5-oxahexanoic acid (PFMBA)	NH,NY,VT-DW,ME,NJ,PA,CT
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoropentanesulfonic acid (PFPeS)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoroundecanoic acid (PFUnA)	NH,NY,VT-DW,ME,NJ,PA,CT
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoroheptanoic acid (PFHpA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorooctanoic acid (PFOA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorooctanesulfonic acid (PFOS)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorononanoic acid (PFNA)	NH,NY,VT-DW,ME,NJ,PA,CT

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
СТ	Connecticut Department of Public Health	PH-0821	12/31/2024
NY	New York State Department of Health	10899 NELAP	04/1/2024
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2024
NJ	New Jersey DEP	MA007 NELAP	06/30/2024
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2024
ME	State of Maine	MA00100	06/9/2025
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2024

(o 3 Results Requested Bv: 10/18/2023			LAB USE ONLY							25 Compound List		Samples Intact Y or N	-	
23J1227 AF	State Of Origin: NY Cert. Needed: X Yes No Owner Received Date: 10/4/2023		Preserved Containers		X	×					25 Com) 01 (01 col	Received on Ice Y or N	name and signature may not be provident in the owner laboratory.	
	Rush Multiplier X Samples Pre-Logged into eCOC r Name: 1,4DIOXANE/POC/PFAS/CL 10/4	Pace New England 39 Spruce St. East Longmeadow, MA 01028 Phone (413)525-2332	Sa d	Other Date/Time Date/Time Mathy	70272838001	10/4/2023 11:45 70272838002 Drinking 1				X	10 arus (Campony X	reen injuits alio 322	°C Custody Seal Y or N	This chain of custody is pencidered complete as is since this information is available in the owner laporatory. This chain of custody is pencidered complete as is since this information is available in the owner laporatory. $PPPPN$ $PV(S 0-16-23) \le 0$ $PPN = 0.010-23 \circ 0.000$ $PPN = 0.010-23 \circ 0.000$	
Internal Transfer Chain of Custod	Workorder: 70272838 Workorder Name:	keport Io Jennifer Aracri 575 Broad Hollow Road Melville, NY 11747 Phone 516-370-6016		term Sample ID	N-07407	2 N-10195	4	5	Transfers Released By	1 NNA NAVAN		RA	Cooler Temperature on Rečeipt	This chain of custody is pensidered of the train of custody is pensidered of the train of the tr	7

Monday, October 09, 2023 11:31:17 AM

FMT-ALL-C-002rev.00 24March2009

.

Page 1 of 1

۱ ____

DC#_Title: ENV-FRM-ELON-0001 v07_Sample Receiving Checklist

Effective Date: 07/13/2023

Log In Back-Sheet

Client	
Project 1, 4 DIOR USE/ PUL/PEASICI	16/4
MCP/RCP Required	
Deliverable Package Requirement N 1A	<u>Re</u>
Location 1, 40 Volume/ Per C/P AS/C	10/4-Re
PWSID# (When Applicable)	<u></u>
Arrival Method:	<u>cc</u>
Courier Fed Ex Walk In Other	<u>cc</u>
Received By / Date / Time AM / C//0/2910) <u>All</u>
Back-Sheet By / Date / Time 1 / 0/0/23 /3	'אל' <u>sa</u> i
Temperature Method#	Is t
Temp $\sqrt{6^{\circ} C}$ Actual Temperature $4 + 5$	Pro
Rush Samples: Yes / Notify	
Short Hold: Yes No Notify	Sp
Notes regarding Semples (SOC - which - (soc	<u>M</u> S T.:
Notes regarding Samples/COC outside of SOP:	Tri
Notes regarding Samples/COC outside of SOP:	
Notes regarding Samples/COC outside of SOP:	Tri Lat CO
Notes regarding Samples/COC outside of SOP:	Tri Lat CO CC
Notes regarding Samples/COC outside of SOP:	Tri Lat CO CC
Notes regarding Samples/COC outside of SOP:	Tri Lat CO CC
Notes regarding Samples/COC outside of SOP:	Tri Lat CO CC
Notes regarding Samples/COC outside of SOP:	Tri Lat CO CC Cli Pro
Notes regarding Samples/COC outside of SOP:	Tri Lat CO CC Cli Pro
Notes regarding Samples/COC outside of SOP:	Tri Lat CO CC Cli Pro
Notes regarding Samples/COC outside of SOP:	Tri Lat CO CC Cli Pro
Notes regarding Samples/COC outside of SOP:	Tri Lat CO CC Cli Pro All
Notes regarding Samples/COC outside of SOP:	Tri Lat CO CC Cli Pro All

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

, 	1	Thue	False
	Received on Ice	<u></u>	
4	Received in Cooler		
	Custody Seal: DATE TIME	Ď	Ū
	COC Relinguished	<u>\</u>	Ľ
	COC/Samples Labels Agree	Ŭ	
	All Samples in Good Condition	[]	
	Samples Received within Holding Ti	<u>me Д</u>	
	is there enough Volume	\square	
	Proper Media/Container Used	Ź	
	Splitting Samples Required		Q
	MS/MSD		D
	Trip Blanks		
	Lab to Filters	D ,	
	COC Legible		
	COC Included: (Check all included	d)	· • • • •
	Client 4 Analysis 4	Sampler Name	Ð
	Project 🞑 IDs 🕌	Collection Date/Time	ĮД
	All Samples Proper pH: N7		
	Additional Cont	tainer Notes	
	Note: West Virginia requires all	samples to have their	
	temperature taken. Note any o		
		··	<u></u>
		· · · · · · · · · · · · · · · · · · ·	
I	······································		

· .

Page 1 of 2

DC#_Title: ENV-FRM-ELON-0001 v07_Sample Receiving Checklist

Effective Date: 07/13/2023

20	19	18	11	16	15	1	13	1	1	11								Γ		Sample		
						╞═╴					-	30		5	Ś	₽	<u>w</u>			16oz Amb/Clear	5	
																		├──		8oz Amb/Clear	līcie	S
																		┣		4oz Amb/Clear	A .	Soils Jars
												-						<u> </u>		2oz Amb/Clear	(Circle Amb/Clear)	S
													<u> </u>							Unpreserved	=	<u> </u>
				<u> </u>																HCL	12	
										<u> </u>										Sulfuric	1 Liter	a
		—								-					<u> </u>		 			Sulfuric		P
			<u> </u>	┨───		<u> </u>							-			 		┣──	 		2	Ambers
				 			 	<u> </u>	<u> </u>				<u> </u>			<u> </u>		<u> </u>	 	Phosphoric	250mL	2
			┨───		<u> </u>					┣──			 		<u> </u>	┣	┠	<u> </u>		HCI		
			ļ				 													Unpreserved	100ml	
		ļ		<u> </u>	_	ļ	<u> </u>	<u> </u>			ļ	<u> </u>]	Unpreserved	1 Liter	
		Į		<u> </u>	<u> </u>				<u> </u>											Sulfuric		
<u> </u>		ļ	Į	Ļ_	<u> </u>						ļ	<u> </u>								Unpreserved	500mL	1
			<u> </u>	<u> </u>												<u> </u>				Sulfuric] Z	
				<u> </u>								<u> </u>								Unpreserved]_
																				Trizma	1	Plastics
																				Sulfuric	1.	8
L																				Nitric	250mL	
			<u> </u>														Ι	1		NaOH	12	
]											Ι			1		5	2	Ammonium Acetate	1	
											1			Γ		1	Τ	Ī	\square	NaOH/Zinc	1	
																1	Í	1		Unpreserved	1	
											1									HCI	1 :	5
									Ι		1					1	1	1	1	MeOH		VOAV
		Ι						1	Ţ	1	1				1	1	1	1	\top	D.I. Water		fials
						Ī		1	1	1			1	1		1	†	1	1	BiSulfate	1	
Γ			Τ	Γ	Τ		T				T	1	T		\mathbf{T}	1	\square	1		Col/Bact	╞──	
	1		1		Ţ	1			1	1	1		1	1		1-	1	1	1			~
	t	1		1	1-	T	1	1	1-		1		1-	1	1-	1	<u> </u>	†				Other/Fill in
	T	1	1	1	1	Ť	1	1	1	†—	\mathbf{T}		†	\uparrow	1	1-	+	+-	1	·	1 -	- F
	1	1		1	1	1	1		1	1	1	1	1		\mathbf{T}	1	+	1	1		1	== 5
	1	1	1	1	1	1		1	1	1	\mathbf{T}	1		\mathbf{T}	1	1-	1	1	1		1	

Page 2 of 2

- OFF LINE - RUN TO SYSTEM	Treatment Types AST - Air Stripper GAC - Granular Activated Charcoal N - Nitrate Removal Plant FE - Iron Removal Plant O - Other	Lab No.			
WELL OFF LINE	OriginTreatmentD- DistributionAST - ARW- Raw WellGAC - GRW- Treated WellNTW- TankFEMW- Monitoring WellOI- InfluentE- Effluent	Analysis	1,4D.cane O PEC/NEZ A PEC MEChod 553 A Chlorides	14Dicane DPolice DFAC method 533 DMondes DMondes DMondes	
PUBLIC WATER SUPPLIER PUBLIC WATER SUPPLIER Date: 10/4/23 Collected By: 00/01/21/3	Purpose RO - Routine RE - Resample S - Special	556 Field Readings Cl2 pH/Temp	apple - s	C. Marine	
Sample Requered BUBLIC WATEP PUBLIC WATEP Date: Lord Collected By: Content Accepted By: Content Cooler Temp: Content	Sample Types PW - Potable Water GW - Groundwater SW - Surface Water WW - Waste Water AQ - Aqueous S - Soil	Origin Treatment Purpose	RW / R	XM X X X X	
0272838 bicker Mariak	Y liste	Location	Tofferson 11	Teresalem J N-10195	
#: 70	lane): Nu	ne Sample ed: Type	9:30 (2M)	1:48 GW	
Client Info: Name or Code: Address:	Phone #: Phone #: Attn: <u>Norte</u> Proj. # or (Name): Bill To: Copies To: Sample Info:	abad Date/Time Collected:	25 of 27		Remarks:

Q

		nitals
Multiday Project charge	200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200	Matrix Solid Non-aqueeus Liquid Non-aqueeus Liquid Oil Wipe Dinking Water Sender Initials Sender Initials Due Date: 10/13/23 NY9M
Use Point Number Spreadsheet Add SCLOGFD to first sample for field charge	Method Method<	WT Note NAL Note NAL Note NAL Note NAL
Use Point N	Beal Beal Beal Beal Beal Beal Beal Beal Beal	PTU 10C BP1U 11. unpreserved plastic BP3N 250mL HUO3 plastic BP3C 250mL Unpres amber glass AG2U 500mL unpres amber glass AG2U 500mL unpres amber glass Can ato be a BP4N SOC Can ato be a BP4N Anth. Atestitic amber vial DG69Y 4mm. Atestitate 60mL val DG64M Na Thio amber vial DG64M Na Thio suitate 60mL val AG31 1350.750mL bottle BP1B Na Thiosultate 250mL bottle AG31 137.153.525.3 Chemical Blend
	B631 B631 B632 B632 B632 B632 B632 B632 B632 B632	
5/5/	SE28 Image: Second	Misc. SP5T 120mL Coliform Na Thio R Reacone Kil NGCU 202 Unpreserved Jar WCFU 202 Unpreserved Jar WCFU 202 Unpreserved Jar WOFU 602 Unpreserved Jar WF 1.1 LAL Clear Glass GN General WP Wipe
Profile #:	Тебал тебал Аса	Plastic 125mL unpreserved plastic 500mL unpreserved plastic 500mL unpreserved plastic 500mL HNO3 plastic 250mL HNO3 plastic 250mL HNO3 plastic 250mL HNO3 plastic 500mL HNO3 plastic 500mL HNO3 plastic 500mL HNO3 plastic 11 HNO3 plastic 11 HNO3 plastic 11 HNO3 plastic 11 HNO3 plastic 11 HNO3 plastic Na Thiosulfate Amber Bottle
<u>fed</u> 10/4	3F9V 3F9V <td< td=""><td>r glass BP4U r glass BP4U r glass BP3U r glass BP2U glass BP2U dlass BP2U dlass BP2N dlass BP2N dlass BP2N dlass BP2N BP3T BP3T BP3T BP1B BP1B</td></td<>	r glass BP4U r glass BP4U r glass BP3U r glass BP2U glass BP2U dlass BP2U dlass BP2N dlass BP2N dlass BP2N dlass BP2N BP3T BP3T BP3T BP1B BP1B
1 7 HUV	4690 4690 7690 7 7690 7 7690 7	
Client: N Work ID: 44 DZOX	Осал Осал	Glass 40mL unpres clear vial AG4U 40mL Ascorbic-HCI clear vial AG3U 40mL Ascorbic-HCI clear vial AG3U 40mL Suffuice clear vial AG3U 40mL Suffuice clear vial AG3L 40mL Suffuice Acti 40mL AG3R Ammonium CliCuSO4 40mL AG3R 40az clear soli jar AG1L 4oz clear soli jar AG1L
		Additional Comments Additional Comments Additional Comments Mageo Bazi Additional Comments

DC#_Tkik: ENV-FRM-MELV-0150 v1_Sample Container Count Melville Effective Date: 6/10/2023 Pace® Analytical Services, LLC

×.

* _* _*

Page 1 of 1

Gualtrax ID: 152532

DC#_Title:	ENV-FRM-MELV-0024	v4_	SCUR
Effective D	ate 5/23/2023		

		- rosed this	1971) 1		WO#	:702	27283	8
Client Name:		NY	MI	Projec	t# PM: JSA		Due Date:	10/13/23
Courier: 🛛 Fed Ex 🗂 UPS 🔲 US	PSIC	lient [] (Commerc	ial 🗍 Pace 🗍 Oth	er CLIENT:	NYAW		
Tracking #:								
Custody Seal on Cooler/Box Pres Packing Material: Bubble Wrap	Bubt	ole Bags	Ziplo	c 🧖 None 🗌 Oth	er Type of Ice: 1	Wet Blue	None	0
Thermometer Used: Cooler Temperature(°C): emp should be above freezing to 6.0°C USDA Regulated Soil (J N/A, wa	Coole	er Tempe	erature C	0 <u>3</u> orrected(°C): / 4 ·	Samples on ice Date/Time 503	, cooling pro 5A kits plac	ecess has begun ed in freezer	
Did samples originate in a quaranti	ne zone v			States: AL, AR, CA, ck map)? □ Yes □		. NC, NM, N	IY, OK, OR, SC,	TN, TX,
Did samples o	rionate fr	rom a for	eian sour	ce including Hawaii	and Puerto Rico)?		No	
If Yes to either question, fill or								(
in rea to entier question, in of	at a neg	nateu 3	on check	Date and Initi	als of person e:	ramining	Contents:	ork.
			_		-		coments. S	14 10/4/2
Their of Custody Days of	6	_ 1 1			COMM	ENTS:		
Chain of Custody Present:	6Yes			1.				
Chain of Custody Filled Out:	oYes			2.				
Chain of Custody Relinquished:	Difes	DN0	- 6174	3.				
ampler Name & Signature on COC		DNO	, oN/A	4.				
amples Arrived within Hold Time:	Lites	DNO		5.				
hort Hold Time Analysis (<72hr)		DNo		6.				
ush Turn Around Time Requeste		DHO		7,				
ufficient Volume: (Triple volume rovided for MS/MSD)	QYes	οNo		8.				
orrect Containers Used:	Dies	οNo		9.				
-Pace Containers Used:	overs	αNo		-				
ontainers Intact:	pres	DNO		10.				
illered volume received for	oYes	aNo	BIN/A		ediment is visible in th	a dissolved	antainac	
issolved tests	2.05	Cirio				te dissolved (Londanet,	
ample Labels match COC: •	eres	TNO		12,				
Includes date/lime/ID/Analysi: Matri			OTHER					
		-		Date and Initia	als of person ch	ecking pr	eservation:	
					ne of percenten	conting pr	convarion. S	14 10/4/2
Il containers needing preservation	oves	oNo	oN/A	13. 🗆 HNO3	⊡ H₂SO₄ i NaO	H o HCI		/ /
ave been MC 22 FI		0110	Chant	5	e 84 -		5.	
H paper Lot # 14C 325/7				Sample			2. X	
Il containers needing preservation				#				
compliance with method recomme								
INO3, H2SO4, HCI, NaOH>9 Sulfid	e, e les	οNo	oN/A					
AOH>12 Cyanide)								
xceptions: VOA, Coliform, TOC/DC	C, Oil ar	nd Greas	e,				<u>28</u> .	1 - C
RO/8015 (water).				Initial when completed	1102224200222	Date/Time	preservative added:	
er Method, VOA pH is checked afte					preservative;			24
amples checked for dechlorination:	aYes	οNo	OMA	14.				
I starch test strips Lot #			1.0					
esidual chlorine strips Lot #				Positive for Res. C	Chlorine? Y N			
M 4500 CN samples checked for s	uloYes	οNo	oN/A	15.				
ead Acetate Strips Lot #				Positive for Sulfide	Y N	7		
eadspace in VOA Vials (>6mm):	DYes	DNO	oN/A	16.				
ip Blank Present:	oYes	oNo	ONA	17.	-			
ip Blank Custody Seals Present	oYes	⊡No	ONA					
lient Notification/ Resolution:				Field Data Require	ed? Y / I	N		
erson Contacted:		22		Date/Tim	e:			
omments/ Resolution:								
			8					
PM (Project Manager) review is document	led electro	nically in l	JMS.					

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-05767

Lab No. : 70274799001

Type: Drinking Water Origin: Raw Well Routine

Liberty-NY - Merrick OPS 60 Brooklyn Avenue

TEL: (516) 370-6000 FAX: (516) 886-5526

Merrick, NY 11566

Attn To : Natasha Niola

 Federal ID :
 2902840

 Collected :
 10/19/2023 11:30 AM
 Point
 N-05767

 Received :
 10/19/2023 12:12 PM
 Location
 Demott 4 Well

 Collected By
 CLIENT
 CLIENT
 Collected By
 CLIENT

www.pacelabs.com

Sample Comments:

Samples were received on the same day of collection on ice and are above 6 degrees Celcius. Samples were placed on ice by the lab and the cooling process has begun. RUN TO WASTE

Analytical Method: EPA 200.	8						
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Limit	Analyzed:	Container:
Lead	<1.0		1	ug/L	15	10/27/2023 3:08 PM	001 BP4N1/1
Thallium	<0.30		1	ug/L	2	10/27/2023 3:08 PM	001 BP4N1/1

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

Result(s) reported meet(s) NYS Regulatory Limit(s).

Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Jennifer Aracri Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

page 1 of 24

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests Type: Drinking Water Origin: Raw Well Routine

Liberty-NY - Merrick OPS 60 Brooklyn Avenue

Merrick, NY 11566

Attn To: Natasha Niola

Federal ID : 2902840 Collected : 10/19/2023 09:45 AM Received : 10/19/2023 12:12 PM

www.pacelabs.com

Collected By CLIENT

TEL: (516) 370-6000 FAX: (516) 886-5526

Client Sample ID.: N-09338

Lab No. : 70274799002

Point N-09338 Location Seamanneck 4 Well

Analytical Method:EPA 200.8							
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
Lead	<1.0		1	ug/L	15	10/27/2023 3:10 PM	002 BP4N1/1
Thallium	0.39		1	ug/L	2	10/27/2023 3:10 PM	002 BP4N1/1
Analytical Method: EPA 300.0							
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
Chloride	19.5		1	mg/L	250	11/02/2023 9:25 PM	002 BP3U1/1
Analytical Method: EPA 522		Prep Method:	EPA 522		Prep Date	2: 10/24/2023 10:20	
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	2.0*		1	ug/L	1	10/24/2023 5:07 PM	002 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	103%		1	%REC		10/24/2023 5:07 PM	002 AG2R1/2
Analytical Method: EPA 524.2							
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,1,1-Trichloroethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,1,2,2-Tetrachloroethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,1,2-Trichloroethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,1,2-Trichlorotrifluoroethane	<0.50	N3	1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,1-Dichloroethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2

1,1,2-1 ric	hlorotrifluoroethane	<0.50	N3	1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,1-Dichlo	proethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,1-Dichlo	proethene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,1-Dichlo	propropene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,2,3-Tric	hlorobenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,2,3-Tric	hloropropane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,2,4-Tric	hlorobenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,2,4-Trin	nethylbenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,2-Dichlo	orobenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,2-Dichlo	proethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,2-Dichlo	oropropane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,3,5-Trin	nethylbenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,3-Dichlo	orobenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,3-Dichlo	propropane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
1,4-Dichlo	orobenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
2,2-Dichlo	oropropane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
2-Chlorot	oluene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2

1

1

1

Qualifiers:

Benzene

4-Chlorotoluene

Bromobenzene

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

< 0.50

< 0.50

<0.50

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting

limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).

Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

ug/L

ug/L

ug/L

10/30/2023 3:13 PM

10/30/2023 3:13 PM

10/30/2023 3:13 PM

002 VG9C1/2

002 VG9C1/2

002 VG9C1/2

5

5

5

Jennifer Aracri Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-09338

Lab No. : 70274799002

Type: Drinking Water Origin: Raw Well Routine

Liberty-NY - Merrick OPS 60 Brooklyn Avenue

TEL: (516) 370-6000 FAX: (516) 886-5526

Merrick, NY 11566 Attn To : Natasha Niola

 Federal ID:
 2902840

 Collected:
 10/19/2023 09:45 AM
 Point
 N-09338

 Received:
 10/19/2023 12:12 PM
 Location
 Seamanneck 4 Well

 Collected By
 CLIENT
 CLIENT
 Collected By
 CLIENT

www.pacelabs.com

Bromochloromethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Bromodichloromethane	<0.50		1	ug/L		10/30/2023 3:13 PM	002 VG9C1/2
Bromoform	<0.50		1	ug/L		10/30/2023 3:13 PM	002 VG9C1/2
Bromomethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Carbon tetrachloride	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Chlorobenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Chlorodifluoromethane	<0.50	N3,L2	1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Chloroethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Chloroform	<0.50		1	ug/L		10/30/2023 3:13 PM	002 VG9C1/2
Chloromethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Dibromochloromethane	<0.50		1	ug/L		10/30/2023 3:13 PM	002 VG9C1/2
Dibromomethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Dichlorodifluoromethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Ethylbenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Hexachloro-1,3-butadiene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Isopropylbenzene (Cumene)	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Methyl-tert-butyl ether	<0.50		1	ug/L	10	10/30/2023 3:13 PM	002 VG9C1/2
Methylene Chloride	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Styrene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Tetrachloroethene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Toluene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Total Trihalomethanes (Calc.)	<0.50		1	ug/L	80	10/30/2023 3:13 PM	002 VG9C1/2
Trichloroethene	2.6		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Trichlorofluoromethane	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Vinyl chloride	<0.50		1	ug/L	2	10/30/2023 3:13 PM	002 VG9C1/2
cis-1,2-Dichloroethene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
cis-1,3-Dichloropropene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
m&p-Xylene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
n-Butylbenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
n-Propylbenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
o-Xylene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
p-Isopropyltoluene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
sec-Butylbenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
tert-Butylbenzene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
trans-1,2-Dichloroethene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
trans-1,3-Dichloropropene	<0.50		1	ug/L	5	10/30/2023 3:13 PM	002 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	98%		1	%REC		10/30/2023 3:13 PM	002 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	98%		1	%REC		10/30/2023 3:13 PM	002 VG9C1/2

Qualifiers:

- sample preparation, dilution of the sample aliquot, or moisture content.
- ND Not Detected at or above adjusted reporting limit.
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting
- limit.Estimated value below calibration range
- U Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).

Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

page 3 of 24

Jennifer Aracri Test results meet the requirements of NELAC unless otherwise noted.

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Lab No. : 70274799003

Client Sample ID.: GAC-3S/4S

Type: Drinking Water Origin: Raw Well Routine

Liberty-NY - Merrick OPS 60 Brooklyn Avenue

Merrick, NY 11566

Attn To: Natasha Niola

Federal ID : 2902840 Collected : 10/19/2023 10:05 AM Received : 10/19/2023 12:12 PM Collected By CLIENT

TEL: (516) 370-6000 FAX: (516) 886-5526

www.pacelabs.com

Point

GAC-3S/4S Location Seamanneck Wells 3/4

Analytical Method: EPA 200.8							
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
Lead	<1.0		1	ug/L	15	10/27/2023 3:11 PM	003 BP4N1/1
Thallium	<0.30		1	ug/L	2	10/27/2023 3:11 PM	003 BP4N1/1
Analytical Method:EPA 300.0							
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
Chloride	21.5		1	mg/L	250	11/02/2023 10:03	003 BP3U1/1
Analytical Method:EPA 522		Prep Method:	EPA 522		Prep Date	e: 10/24/2023 10:20	
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	2.3*		1	ug/L	1	10/24/2023 5:23 PM	003 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	98%		1	%REC		10/24/2023 5:23 PM	003 AG2R1/2
Analytical Method:EPA 524.2							
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,1,1-Trichloroethane	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2

1,1,1,2-Tetrachloroethane	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,1,1-Trichloroethane	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,1,2,2-Tetrachloroethane	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,1,2-Trichloroethane	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,1,2-Trichlorotrifluoroethane	<0.50	N3 1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,1-Dichloroethane	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,1-Dichloroethene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,1-Dichloropropene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,2,3-Trichlorobenzene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,2,3-Trichloropropane	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,2,4-Trichlorobenzene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,2,4-Trimethylbenzene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,2-Dichlorobenzene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,2-Dichloroethane	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,2-Dichloropropane	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,3,5-Trimethylbenzene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,3-Dichlorobenzene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,3-Dichloropropane	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
1,4-Dichlorobenzene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
2,2-Dichloropropane	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
2-Chlorotoluene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
4-Chlorotoluene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Benzene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Bromobenzene	<0.50	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting

limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).

Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

page 4 of 24

Jennifer Aracri Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Lab No. : 70274799003

Client Sample ID.: GAC-3S/4S

Type: Drinking Water Origin: Raw Well Routine

TEL: (516) 370-6000 FAX: (516) 886-5526 www.pacelabs.com Liberty-NY - Merrick OPS

Liberty-NY - Merrick OPS 60 Brooklyn Avenue

Merrick, NY 11566 Attn To : Natasha Niola Federal ID : 2902840 Collected : 10/19/2023 10:05 AM Point GAC-3S/4S Received : 10/19/2023 12:12 PM Location Seamanneck Wells 3/4

Collected By CLIENT

Bromochloromethane	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Bromodichloromethane	<0.50		1	ug/L		10/30/2023 2:47 PM	003 VG9C1/2
Bromoform	<0.50		1	ug/L		10/30/2023 2:47 PM	003 VG9C1/2
Bromomethane	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Carbon tetrachloride	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Chlorobenzene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Chlorodifluoromethane	<0.50	N3,L2	1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Chloroethane	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Chloroform	<0.50		1	ug/L		10/30/2023 2:47 PM	003 VG9C1/2
Chloromethane	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Dibromochloromethane	<0.50		1	ug/L		10/30/2023 2:47 PM	003 VG9C1/2
Dibromomethane	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Dichlorodifluoromethane	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Ethylbenzene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Hexachloro-1,3-butadiene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Isopropylbenzene (Cumene)	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Methyl-tert-butyl ether	<0.50		1	ug/L	10	10/30/2023 2:47 PM	003 VG9C1/2
Methylene Chloride	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Styrene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Tetrachloroethene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Toluene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Total Trihalomethanes (Calc.)	<0.50		1	ug/L	80	10/30/2023 2:47 PM	003 VG9C1/2
Trichloroethene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Trichlorofluoromethane	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Vinyl chloride	<0.50		1	ug/L	2	10/30/2023 2:47 PM	003 VG9C1/2
cis-1,2-Dichloroethene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
cis-1,3-Dichloropropene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
m&p-Xylene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
n-Butylbenzene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
n-Propylbenzene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
o-Xylene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
p-Isopropyltoluene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
sec-Butylbenzene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
tert-Butylbenzene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
trans-1,2-Dichloroethene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
trans-1,3-Dichloropropene	<0.50		1	ug/L	5	10/30/2023 2:47 PM	003 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	97%		1	%REC		10/30/2023 2:47 PM	003 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	99%		1	%REC		10/30/2023 2:47 PM	003 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in

sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting

limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).

Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

page 5 of 24

Jennifer Aracri Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road, Melville, NY 11747 TEL: (516) 370-6000 FAX: (516) 886-5526 www.pacelabs.com

WorkOrder :

70274799

Laboratory Certifications

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: 10478 Primary Accrediting Body Pennsylvania Certification #: 10478 Primary Accrediting Body Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340 Virginia Certification # 460302

575 Broad Hollow Road, Melville, NY 11747 TEL: (516) 370-6000 FAX: (516) 886-5526 <u>www.pacelabs.com</u>

WorkOrder :

70274799

Additional Qualifiers

L2 - Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

N3 - Accreditation is not offered by the relevant laboratory accrediting body for this parameter.

November 15, 2023

Jennifer Aracri Pace Analytical Services - Long Island, NY 575 Broad Hollow Road Melville, NY 11747

Project Location: TL/PB/1,4/POC/533 10/19 Client Job Number: Project Number: 70274799 Laboratory Work Order Number: 23J3139

Enclosed are results of analyses for samples as received by the laboratory on October 24, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

amp -

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
23J3139-01	5
23J3139-02	6
Sample Preparation Information	7
QC Data	8
Semivolatile Organic Compounds by - LC/MS-MS	8
B356292	8
Flag/Qualifier Summary	11
Certifications	12
Chain of Custody/Sample Receipt	13

Pace Analytical Services - Long Island, NY 575 Broad Hollow Road Melville, NY 11747 ATTN: Jennifer Aracri

REPORT DATE: 11/15/2023

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 70274799

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23J3139

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: TL/PB/1,4/POC/533 10/19

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
N-09338	23J3139-01	Drinking Water		EPA 533	
GAC-38/48	23J3139-02	Drinking Water		EPA 533	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan S. Kelley

Meghan E. Kelley Reporting Specialist

Project Location: TL/PB/1,4/POC/533 10/19

Date Received: 10/24/2023

Field Sample #: N-09338

Sample ID: 23J3139-01

Sample Matrix: Drinking Water

Sampled:	10/19/2023	09:45	

Sample Description:

			Semivolatile C	Organic Cor	npounds by - I	.C/MS-MS				
Analyte	Results	RL	MCL/SMCL MA ORSG	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluorobutanesulfonic acid (PFBS)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluoropentanoic acid (PFPeA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluorohexanoic acid (PFHxA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
11Cl-PF3OUdS (F53B Major)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
9Cl-PF3ONS (F53B Minor)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluorodecanoic acid (PFDA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluorododecanoic acid (PFDoA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluorohexanesulfonic acid (PFHxS)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluoropentanesulfonic acid (PFPeS)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluoroundecanoic acid (PFUnA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluoroheptanoic acid (PFHpA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluorooctanoic acid (PFOA)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2
Perfluorooctanesulfonic acid (PFOS)	ND	1.7		ng/L	1		EPA 533	11/2/23	11/11/23 10:45	JR2

Perfluorononanoic acid (PFNA)	ND 1.7	ng/L	1	EPA 533	11/2/23	11/11/23 10:45	JR2
Surrogates	% Recovery	Recovery Limits	Flag/Qual				
M2-4:2FTS	89.3	50-200				11/11/23 10:45	
M2-8:2FTS	117	50-200				11/11/23 10:45	
MPFBA	95.9	50-200				11/11/23 10:45	
M3HFPO-DA	77.5	50-200				11/11/23 10:45	
M6PFDA	85.4	50-200				11/11/23 10:45	
M3PFBS	100	50-200				11/11/23 10:45	
M7PFUnA	88.5	50-200				11/11/23 10:45	
M2-6:2FTS	142	50-200				11/11/23 10:45	
M5PFPeA	103	50-200				11/11/23 10:45	
M5PFHxA	90.6	50-200				11/11/23 10:45	
M3PFHxS	99.5	50-200				11/11/23 10:45	
M4PFHpA	89.5	50-200				11/11/23 10:45	
M8PFOA	93.8	50-200				11/11/23 10:45	
M8PFOS	95.1	50-200				11/11/23 10:45	
M9PFNA	89.8	50-200				11/11/23 10:45	
MPFDoA	86.8	50-200				11/11/23 10:45	

Work Order: 23J3139

Work Order: 23J3139

Project Location: TL/PB/1,4/POC/533 10/19 Date Received: 10/24/2023

Field Sample #: GAC-38/48

Sample Matrix: Drinking Water

Sample ID: 23J3139-02

Sampled: 10/19/2023 10:05

Sample Description:

			Semivolatile C	Organic Cor	npounds by - I	.C/MS-MS				
			MCL/SMCL					Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluorobutanesulfonic acid (PFBS)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluoropentanoic acid (PFPeA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluorohexanoic acid (PFHxA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
11Cl-PF3OUdS (F53B Major)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
9Cl-PF3ONS (F53B Minor)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluorodecanoic acid (PFDA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluorododecanoic acid (PFDoA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluoropentanesulfonic acid (PFPeS)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluoroundecanoic acid (PFUnA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluoroheptanoic acid (PFHpA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluorooctanoic acid (PFOA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluorooctanesulfonic acid (PFOS)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2
Perfluorononanoic acid (PFNA)	ND	1.8		ng/L	1		EPA 533	11/2/23	11/11/23 10:52	JR2

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
M2-4:2FTS	87.1	50-200		11/11/23 10:52
M2-8:2FTS	136	50-200		11/11/23 10:52
MPFBA	93.8	50-200		11/11/23 10:52
M3HFPO-DA	77.7	50-200		11/11/23 10:52
M6PFDA	87.9	50-200		11/11/23 10:52
M3PFBS	95.1	50-200		11/11/23 10:52
M7PFUnA	91.4	50-200		11/11/23 10:52
M2-6:2FTS	127	50-200		11/11/23 10:52
M5PFPeA	97.9	50-200		11/11/23 10:52
M5PFHxA	89.4	50-200		11/11/23 10:52
M3PFHxS	93.2	50-200		11/11/23 10:52
M4PFHpA	89.3	50-200		11/11/23 10:52
M8PFOA	93.3	50-200		11/11/23 10:52
M8PFOS	93.1	50-200		11/11/23 10:52
M9PFNA	91.1	50-200		11/11/23 10:52
MPFDoA	91.8	50-200		11/11/23 10:52

Sample Extraction Data

Prep Method:EPA 533 Analytical Method:EPA 533

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23J3139-01 [N-09338]	B356292	286	1.00	11/02/23
23J3139-02 [GAC-3S/4S]	B356292	275	1.00	11/02/23

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B356292 - EPA 533										
Blank (B356292-BLK1)				Prepared: 11	/02/23 Anal	yzed: 11/11/2	3			
Perfluorobutanoic acid (PFBA)	ND	1.8	ng/L							
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	1.8	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	1.8	ng/L							
11Cl-PF3OUdS (F53B Major)	ND	1.8	ng/L							
9Cl-PF3ONS (F53B Minor)	ND	1.8	ng/L							
4,8-Dioxa-3H-perfluorononanoic acid	ND	1.8	ng/L							
(ADONA) Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.8	ng/L							
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	ng/L							
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L							
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.8	ng/L							
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L							
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L							
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L							
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.8	ng/L							
Perfluoropentanesulfonic acid (PFPeS)	ND	1.8	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L							
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L							
Perfluorooctanoic acid (PFOA)	ND	1.8	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L							
Perfluorononanoic acid (PFNA)	ND	1.8	ng/L							
Surrogate: M2-4:2FTS	37.4		ng/L	34.6		108	50-200			
Surrogate: M2-8:2FTS	47.6		ng/L	35.4		135	50-200			
Surrogate: MPFBA	40.1		ng/L	36.9		109	50-200			
Surrogate: M3HFPO-DA	32.8		ng/L	36.9		88.9	50-200			
Surrogate: M6PFDA	38.4		ng/L	36.9		104	50-200			
Surrogate: M3PFBS	35.5		ng/L	34.4		103	50-200			
Surrogate: M7PFUnA	39.2		ng/L	36.9		106	50-200			
Surrogate: M2-6:2FTS	64.0		ng/L	35.1		183	50-200			
Surrogate: M5PFPeA	40.0		ng/L	36.9		108	50-200			
Surrogate: M5PFHxA	37.5		ng/L	36.9		102	50-200			
Surrogate: M3PFHxS	36.3		ng/L	34.9		104	50-200			
Surrogate: M4PFHpA	37.9		ng/L	36.9		103	50-200			
Surrogate: M8PFOA	39.2 36.9		ng/L	36.9 35.3		106 104	50-200 50-200			
Surrogate: M8PFOS Surrogate: M9PFNA	36.9 39.0		ng/L ng/L	35.3 36.9		104 106	50-200 50-200			
Surrogate: MPFDoA	39.0		ng/L	36.9 36.9		100	50-200 50-200			
LCS (B356292-BS1)					/02/23 Anal					
Perfluorobutanoic acid (PFBA)	10.3	1.9	ng/L	9.59		107	70-130			
Perfluorobutanesulfonic acid (PFBS)	8.90	1.9	ng/L	8.49		105	70-130			
Perfluoropentanoic acid (PFPeA)	9.99	1.9	ng/L	9.59		104	70-130			
Perfluorohexanoic acid (PFHxA)	9.95	1.9	ng/L	9.59		104	70-130			
11Cl-PF3OUdS (F53B Major)	8.94	1.9	ng/L	9.04		98.9	70-130			
9Cl-PF3ONS (F53B Minor)	8.46	1.9	ng/L	8.94		94.6	70-130			
	8.46	1.9	ng/L	0.94		74.0	/0-150			

Apolyto	Decult	Reporting Limit	Unita	Spike Lovel	Source	0/DEC	%REC	רזת ק	RPD Limit	Notos
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B356292 - EPA 533										
LCS (B356292-BS1)				Prepared: 11	/02/23 Analy	/zed: 11/11/2	3			
4,8-Dioxa-3H-perfluorononanoic acid	8.82	1.9	ng/L	9.04		97.5	70-130			
ADONA) Hexafluoropropylene oxide dimer acid	10.5	1.9	ng/L	9.59		109	70-130			
HFPO-DA)	10.5		11g/12			105	/0-150			
3:2 Fluorotelomersulfonic acid (8:2FTS A)	8.90	1.9	ng/L	9.21		96.7	70-130			
Perfluorodecanoic acid (PFDA)	10.3	1.9	ng/L	9.59		107	70-130			
Perfluorododecanoic acid (PFDoA)	9.93	1.9	ng/L	9.59		103	70-130			
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	8.68	1.9	ng/L	8.54		102	70-130			
Perfluoroheptanesulfonic acid (PFHpS)	9.25	1.9	ng/L	9.16		101	70-130			
4:2 Fluorotelomersulfonic acid (4:2FTS A)	9.38	1.9	ng/L	8.97		105	70-130			
Perfluorohexanesulfonic acid (PFHxS)	9.31	1.9	ng/L	8.78		106	70-130			
Perfluoro-4-oxapentanoic acid (PFMPA)	10.2	1.9	ng/L	9.59		106	70-130			
Perfluoro-5-oxahexanoic acid (PFMBA)	9.64	1.9	ng/L	9.59		100	70-130			
6:2 Fluorotelomersulfonic acid (6:2FTS A)	10.1	1.9	ng/L	9.11		111	70-130			
Perfluoropentanesulfonic acid (PFPeS)	9.30	1.9	ng/L	9.02		103	70-130			
Perfluoroundecanoic acid (PFUnA)	10.2	1.9	ng/L	9.59		107	70-130			
Nonafluoro-3,6-dioxaheptanoic acid NFDHA)	9.29	1.9	ng/L	9.59		96.9	70-130			
Perfluoroheptanoic acid (PFHpA)	10.1	1.9	ng/L	9.59		106	70-130			
Perfluorooctanoic acid (PFOA)	10.9	1.9	ng/L	9.59		113	70-130			
Perfluorooctanesulfonic acid (PFOS)	8.79	1.9	ng/L	8.88		99.1	70-130			
Perfluorononanoic acid (PFNA)	10.3	1.9	ng/L	9.59		107	70-130			
Surrogate: M2-4:2FTS	40.7		ng/L	36.0		113	50-200			
Surrogate: M2-8:2FTS	52.7		ng/L	36.8		143	50-200			
Surrogate: MPFBA	43.4		ng/L	38.4		113	50-200			
Surrogate: M3HFPO-DA	29.1		ng/L	38.4		75.8	50-200			
Surrogate: M6PFDA	39.4		ng/L	38.4		103	50-200			
Surrogate: M3PFBS	40.1		ng/L	35.8		112	50-200			
Surrogate: M7PFUnA	42.4		ng/L	38.4		110	50-200			
Surrogate: M2-6:2FTS	64.8		ng/L	36.5		178	50-200			
Surrogate: M5PFPeA	43.7		ng/L	38.4		114	50-200			
Surrogate: M5PFHxA	40.7		ng/L	38.4		106	50-200			
Surrogate: M3PFHxS	40.5		ng/L	36.4		111	50-200			
Surrogate: M4PFHpA	39.9 12.5		ng/L	38.4		104	50-200			
Surrogate: M8PFOA Surrogate: M8PFOS	42.5 42.4		ng/L ng/L	38.4 36.8		111 115	50-200 50-200			
Surrogate: M9PFNA	42.4		ng/L	30.8 38.4		113	50-200			
Surrogate: MPFDoA	42.8		ng/L	38.4		112	50-200			
LCS Dup (B356292-BSD1)			-		/02/23 Analy					
Perfluorobutanoic acid (PFBA)	10.4	1.9	ng/L	9.31		111	70-130	0.409	30	
Perfluorobutanesulfonic acid (PFBS)	8.88	1.9	ng/L	8.24		108	70-130	0.216	30	
Perfluoropentanoic acid (PFPeA)	10.0	1.9	ng/L	9.31		108	70-130	0.555	30	
Perfluorohexanoic acid (PFHxA)	10.0	1.9	ng/L	9.31		108	70-130	0.900	30	
11Cl-PF3OUdS (F53B Major)	8.89	1.9	ng/L	8.77		101	70-130	0.519	30	
Cl-PF3ONS (F53B Minor)	9.26	1.9	ng/L	8.68		107	70-130	9.00	30	
l,8-Dioxa-3H-perfluorononanoic acid ADONA)	8.68	1.9	ng/L	8.77		99.0	70-130	1.59	30	
Hexafluoropropylene oxide dimer acid HFPO-DA)	10.3	1.9	ng/L	9.31		111	70-130	1.25	30	
3:2 Fluorotelomersulfonic acid (8:2FTS A)	9.66	1.9	ng/L	8.94		108	70-130	8.19	30	
Perfluorodecanoic acid (PFDA)	10.3	1.9	ng/L	9.31		110	70-130	0.296	30	
Perfluorododecanoic acid (PFDoA)	9.86	1.9	ng/L	9.31		106	70-130	0.650	30	

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	100000	2	onito	Lever	Tresure	Juite	2	iu p	2	110100
Batch B356292 - EPA 533										
LCS Dup (B356292-BSD1)				Prepared: 11	/02/23 Analy	zed: 11/12/2	23			
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	8.96	1.9	ng/L	8.28		108	70-130	3.19	30	
Perfluoroheptanesulfonic acid (PFHpS)	9.49	1.9	ng/L	8.89		107	70-130	2.48	30	
4:2 Fluorotelomersulfonic acid (4:2FTS A)	9.70	1.9	ng/L	8.70		111	70-130	3.38	30	
Perfluorohexanesulfonic acid (PFHxS)	9.13	1.9	ng/L	8.52		107	70-130	2.02	30	
Perfluoro-4-oxapentanoic acid (PFMPA)	10.6	1.9	ng/L	9.31		114	70-130	4.51	30	
Perfluoro-5-oxahexanoic acid (PFMBA)	10.0	1.9	ng/L	9.31		108	70-130	3.78	30	
6:2 Fluorotelomersulfonic acid (6:2FTS A)	10.4	1.9	ng/L	8.84		118	70-130	3.14	30	
Perfluoropentanesulfonic acid (PFPeS)	9.47	1.9	ng/L	8.75		108	70-130	1.74	30	
Perfluoroundecanoic acid (PFUnA)	10.2	1.9	ng/L	9.31		109	70-130	0.750	30	
Nonafluoro-3,6-dioxaheptanoic acid NFDHA)	9.81	1.9	ng/L	9.31		105	70-130	5.44	30	
Perfluoroheptanoic acid (PFHpA)	10.5	1.9	ng/L	9.31		113	70-130	3.31	30	
Perfluorooctanoic acid (PFOA)	9.82	1.9	ng/L	9.31		105	70-130	10.3	30	
Perfluorooctanesulfonic acid (PFOS)	9.47	1.9	ng/L	8.61		110	70-130	7.39	30	
Perfluorononanoic acid (PFNA)	9.84	1.9	ng/L	9.31		106	70-130	4.61	30	
Surrogate: M2-4:2FTS	37.6		ng/L	34.9		108	50-200			
Surrogate: M2-8:2FTS	40.2		ng/L	35.7		113	50-200			
Surrogate: MPFBA	41.1		ng/L	37.2		110	50-200			
Surrogate: M3HFPO-DA	36.2		ng/L	37.2		97.2	50-200			
Surrogate: M6PFDA	38.0		ng/L	37.2		102	50-200			
Surrogate: M3PFBS	39.1		ng/L	34.7		113	50-200			
Surrogate: M7PFUnA	39.7		ng/L	37.2		107	50-200			
Surrogate: M2-6:2FTS	51.0		ng/L	35.4		144	50-200			
Surrogate: M5PFPeA	41.7		ng/L	37.2		112	50-200			
Surrogate: M5PFHxA	39.2		ng/L	37.2		105	50-200			
Surrogate: M3PFHxS	39.4		ng/L	35.3		112	50-200			
Surrogate: M4PFHpA	39.1		ng/L	37.2		105	50-200			
Surrogate: M8PFOA	40.5		ng/L	37.2		109	50-200			
Surrogate: M8PFOS	39.3		ng/L	35.7		110	50-200			
Surrogate: M9PFNA	39.8		ng/L	37.2		107	50-200			
Surrogate: MPFDoA	38.0		ng/L	37.2		102	50-200			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level
- ND Not Detected
- RL Reporting Limit is at the level of quantitation (LOQ)
- DL Detection Limit is the lower limit of detection determined by the MDL study
- MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 533 in Drinking Water	
Perfluorobutanoic acid (PFBA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorobutanesulfonic acid (PFBS)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoropentanoic acid (PFPeA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorohexanoic acid (PFHxA)	NH,NY,VT-DW,ME,NJ,PA,CT
11Cl-PF3OUdS (F53B Major)	NH,NY,VT-DW,ME,NJ,PA,CT
9CI-PF3ONS (F53B Minor)	NH,NY,VT-DW,ME,NJ,PA,CT
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NH,NY,VT-DW,ME,NJ,PA,CT
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH,NY,VT-DW,ME,NJ,PA,CT
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorodecanoic acid (PFDA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorododecanoic acid (PFDoA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoroheptanesulfonic acid (PFHpS)	NH,NY,VT-DW,ME,NJ,PA,CT
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorohexanesulfonic acid (PFHxS)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoro-4-oxapentanoic acid (PFMPA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoro-5-oxahexanoic acid (PFMBA)	NH,NY,VT-DW,ME,NJ,PA,CT
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoropentanesulfonic acid (PFPeS)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoroundecanoic acid (PFUnA)	NH,NY,VT-DW,ME,NJ,PA,CT
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoroheptanoic acid (PFHpA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorooctanoic acid (PFOA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorooctanesulfonic acid (PFOS)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorononanoic acid (PFNA)	NH,NY,VT-DW,ME,NJ,PA,CT

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
СТ	Connecticut Department of Public Health	PH-0821	12/31/2024
NY	New York State Department of Health	10899 NELAP	04/1/2024
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2024
NJ	New Jersey DEP	MA007 NELAP	06/30/2024
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2024
ME	State of Maine	MA00100	06/9/2025
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2024

2353139	Rush Multiplier X State Of Origin: NY B Samples Pre-Logged into eCOC Cert. Needed: X Yes No No Workorder Name: TL/PB/1,4/POC/CL/533 10/19 Owner Received Date: 10/19/2023 Results Requested By: 11/2/2023 11/2/2023	and the second		Sample Collect Iype Date/Time Lab ID Matrix Office	PS 10/19/2023 09:45 70274799002 Drinking 1 X	PS 10/19/2023 10:05 70274799003 Drinking 1 X X		Very A 10/03 MM C Free March Date/Time Date/Time Date/Time Received By Date/Time Date/Time C 23 Compound List		C Custody Seal Y or N location/name of the sampling site, sa olete as is since this information is average olete as is since the sample of th	Minnon 62:10 6212101
Internal Transfer Chain of Custody	Workorder: 70274799 Workorde	Report To Transferration and the second	Jennifer Aracri Pace Analytical Melville 575 Broad Hollow Road Melville, NY 11747 Phone 516-370-6016	term Sample ID	1 N-09338 PS	2 GAC-3S/4S PS	c. 4	Transfers Released By	3 Conthony She	Cooler Temperature on Réceipt • ***In order to maintain client confidentiality, This chain of custody is considered com This chain of custody is considered com	

Monday, October 23, 2023 11:29:39 AM

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

DC#_Title: ENV-FRM-ELON-0001 v07_Sample Receiving Checklist

Effective Date: 07/13/2023

Log In Back-Sheet

Client <u>PWL</u> Project <u>IL IPB/14/PGC/CL/S</u>	Login Sample Receipt C – Using Acceptance Po brought to the attentic
MCP/RCP Required WLA Deliverable, Package Requirement WLA	Received on Ice
Location TLABIIA- POCICI 153210	19 Received in Cooler
PWSID# (When Applicable) 1	Custody Seal: DATE TIM
Arrival Method:	COC Relinguished
Courier 🖾 Fed Ex 🔲 Walk In 🗖 Other	COC/Samples Labels Agree
Received By / Date / Time LA 10/24/03 92	S All Samples in Good Condition
Back-Sheet By / Date / Time 1 A (0/24/23/5	55 Samples Received within Holding
Temperature Method PW5 # 5	Is there enough Volume
Temp $\sqrt{< 6^{\circ} C}$ Actual Temperature $3, 2$	Proper Media/Container Used
Rush Samples: Yes No Notify	Splitting Samples Required
Short Hold: Yes No Notify	MS/MSD
Notes regarding Samples/COC outside of SOP:	Trip Blanks
	Lab to Filters
	COC Legible
	COC Included: (Check all includ
	Client 📈 Analysis 🗍
	Project 🖾 IDs 🎵
	All Samples Proper pH:
	Additional Co
	Note: West Virginia requires
	temperature taken. Note any

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

True

False

Received on Ice		П						
Received in Cooler	也	Ū						
Custody Seal: DATE TIME		囚						
COC Relinguished	豆	П						
COC/Samples Labels Agree	Ŭ							
All Samples in Good Condition	ĽÚ,							
Samples Received within Holding T	ime 🛄,							
Is there enough Volume								
Proper Media/Container Used	Ŭ	Д						
Splitting Samples Required		Ų.						
MS/MSD		山						
Trip Blanks		<u> </u>						
Lab to Filters	<u> </u>	D						
COC Legible								
COC Included: (Check all include	d)							
Client Analysis	Sampler Name	Ū						
Project IDs	Collection Date/Time	Цľ						
All Samples Proper pH: N/								
Additional Cont	tainer Notes							
Note: West Virginia requires all	samples to have their							
temperature taken. Note any o	utliers.							
	 							

DC#_Title: ENV-FRM-ELON-0001 v07_Sample Receiving Checklist

Effective Date: 07/13/2023

		γ	T	1	l	1	T	1	r	<u> </u>			r	r				r	T			
8	19	100	17	16	15	14	13	12	11	10	9	8	7	6	ഗ	4	ω	2		Sample		
			ļ			<u> </u>	<u> </u>													16oz Amb/Clear		
			<u> </u>																	8oz Amb/Clear	le Ar	Soils
																				4oz Amb/Clear	(Circle Amb/Clear)	Soils Jars
																				2oz Amb/Clear	lear)	S
																				Unpreserved	Ι	Τ
																				HCL	1 Liter	
																				Sulfuric	1=	
																				Sulfuric		Ambers
																				Phosphoric	250mL	iers
																				НСІ	1-	
																				Unpreserved	100mL	
																				Unpreserved	A	
\square																-				Sulfuric	1 Liter	
\square																				Unpreserved	500mL	1
																				Sulfuric	١Ž	
																				Unpreserved	[
																				Trizma		Plastics
																				Sulfuric		ន
																				Nitric	250mL	
																				NaOH	-	
					Ì													+	N	Ammonium Acetate		
																				NaOH/Zinc		
																				Unpreserved		
																				HCI		
																				MeOH		
																1				D.I. Water		Vinle
			Í		ĺ							ĺ					1	Î		BiSulfate		
												ĺ								Col/Bact		
																						2 │
					Í			Ì						Í	Ì	Ì						Othar / Eill in
		Î			Ì									Ì				Ī				
	Ī			Ĩ	1		Ī					Î		Ì		Ì			Ĩ			5
																	ĺ	Î				

In The Second	Analosis I ah No		The Mon Dlad W	7	4 Dioxane POLIVOL (UL	Echlorides& PTC methods 33	@Thall:com brad V	the second secon	44 Diame DOLIDC 013	EChlorides @PPC method \$33	Othallium Olad V			
Sample Request Form Date: Date: 1011012 1011011 111 Date: 1011012 1011011 111 111 Collected By: 1011012 1011011 111 Collected By: 1011011 111 111 Collected By: 1011011 111 111 Cooler Temp: 0-0 0 0 0 Cooler Temp: 0-0 0 0 0 0 0 RW Portable Water RO RO Routine RW 111 111 SW Surface Water S S Special 111 111 AQ Aqueous S Special 111 111 111 S Soil S Special 111 111 111 111	Treatment	Type Purpose Cl2	RW / RD / 4.624		RW/RO/ 5.02.7 /	 (+) 			E GNRO 6.9526 1					
747 Monte : 70274799 Monte : 702	Time Sample	Collected: Type Location	1010 IN 30 GW DEMONT of	LOLON 1	Gius EW Seaman Neck 4				117 10:05PW Seeman NickGAC				Remarks:	

	2 S - 103	10 A	138 U.S.	and a second sec
				WO#:70274799
Client Name	WA.	×.		
	JAN	7		$B_{12} = B_{12} + 10/30/22$
Courier: [] Fed Ex [] UPS []	USPST	Client [Comm	ercial Pace Other CLIENT: NYAW
Tracking #				CELENT - NTOW
Custody Seal on Conter/Read	Process	1718	-	
Packing Material: Bubble M	/ran□ o	ubble D	No Sei	
Thermometer Used: 4419			and the second second	Child Type Of ICE. Wat Place
Cooler Temperature(°C): 9	• Co	rrection	Factor	
Temp should be above freezing to 6.0"	Co	oler Ten	perature	Corrected(°C): 10, C Date/Time \$035A kits placed in freezer
USDA Regulated Soil (woles			
Did samples originate in a sure	waler sa	mpre)		
- unpres originate in a quar	antine zor	e within t	he United	d States: AL, AR, CA, FL, GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX,
If Yos to eith a	es orignati	e from a t	oreign so	urce including Hawaii and Puerto Rico)? Yes No
	l out a Re	gulated	Soil Che	CKIST (ENV-ERM MELV DOTO
		(#		Date and Initials of person examining contents:
Chairer				COMMENTS. EDC 19/19/23
Chain of Custody Present:	eYe	s oNo		COMMENTS:
Chain of Custody Filled Out:	øYe			2.
Chain of Custody Relinquished:	oYe	s DNo	_	3.
Sampler Name & Signature on C Samples Arrived within Hold Tim	OC: ere		DN/A	
Short Hold Time Analysis (<72)	e: ove			5.
Rush Turn Around Time Reque	hr): OYes	DNO		6.
Sufficient Volume: (Triple volume	eres			7.
provided for MS/MSD)	6165			8.
Correct Containers Used:	eres	aNo		9.
-Pace Containers Used:	aves			
Containers Intact:	eves	οNo		10.
Filtered volume received for Dissolved tests	oYes	σNo	AINS	11. Note: if sediment is visible in the dissolved container.
Sample Labels match COC:	, Kr			
-Includes date/time/ID/Analysi: Ma	oYes trix: St	WT OIL		12.
	UL OL	- CIL	OTHER	Date and laifials of
All containers needing preservatio				Date and Initials of person checking preservation: $la7/0/19/23$ 13. $OHNO_3 OH_2SO_4 ONOH OHCI$
nave been	n oYe	s oNo	oN/A	13. DHNO3 DH2SO4 DNaOH DHCI
pH paper Lot # 1+ 0325 179				Somela
All containers needing preservation	n are foun	d to be		Sample #
in compliance with method recommender	nendation	2		
(HNO₃, H₂SO₄, HCI, NaOH>9 Sulf NAOH>12 Cyanide)	ide, Dies	σNo	oN/A	
Exceptions: VOA California	820 			8
Exceptions: VOA, Coliform, TOC/D DRO/8015 (water).	OC, Oil a	nd Greas	e,	
Per Method, VOA pH is checked at	flor anot	le.		Initial when completed: Lot # of added Date/Time preservative added
samples checked for dechlorination	T DYes	aNo	-	preservative,
KI starch test strips Lot #	. 1165	0110	oN/A	14.
Residual chlorine strips Lot #				Positive for Page Chloring and
SM 4500 CN samples checked for s	suloYes	DNo	GN7A	Positive for Res. Chlorine? Y N
Lead Acetate Strips Lot #				Providence of the second
TRADED in MOALC 1 1 1	oYes	οNo	DNIA	16.
Trio Plast Q	aVee.	οNo	QN/A	17.
Headspace in VOA Vials (>6mm): Trip Blank Present: Trip Blank Custody Scole Breast	□Yes		2.02.4	
Frip Blank Present: Frip Blank Custody Seals Present	oYes	oNo	DN7A	
Trip Blank Present: Trip Blank Custody Seals Present Client Notification/ Resolution		oNo		Field Data Required? Y / N
Inp Blank Present: Irip Blank Custody Seals Present Client Notification/ Resolution: Person Contacted:		οNo		Field Data Required? Y / N Date/Time:
Trip Blank Present: Trip Blank Custody Seals Present Client Notification/ Resolution		⊡No		
Inp Blank Present: Irip Blank Custody Seals Present Client Notification/ Resolution: Person Contacted:		οNo		
Inp Blank Present: Irip Blank Custody Seals Present Client Notification/ Resolution: Person Contacted:				
Inp Blank Present: Irip Blank Custody Seals Present Client Notification/ Resolution: Person Contacted: Comments/ Resolution:	oYes	. *		
Inp Blank Present: Irip Blank Custody Seals Present Client Notification/ Resolution: Person Contacted:	oYes	. *		

Pace® Analytical Services, LLC

-

Laboratory Results

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-14347

Lab No. : 70275259001

Type: Drinking Water Origin: Raw Well Routine

Liberty-NY - Merrick OPS 60 Brooklyn Avenue

TEL: (516) 370-6000 FAX: (516) 886-5526

www.pacelabs.com

Merrick, NY 11566

Attn To: Natasha Niola

Federal ID : 2902835

Collected : 10/24/2023 09:00 AM

Received : 10/24/2023 01:50 PM

Collected By CLIENT

N-14347 Point

Location Seaman Neck #3A

Sample Comments:

Samples were received on the same day of collection on ice and are above 6 degrees Celcius. Samples were placed on ice by the lab and the cooling process has begun. RUN TO WASTE

Analytical Method:EPA 200.8							
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
Lead	2.3		1	ug/L	15	10/30/2023 5:08 PM	001 BP4N1/1
Thallium	0.31		1	ug/L	2	10/30/2023 5:08 PM	001 BP4N1/1
Analytical Method:EPA 300.0							
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
Chloride	17.9		1	mg/L	250	11/03/2023 9:18 PM	001 BP4U1/1
Analytical Method:EPA 522		Prep Method:	EPA 522		Prep Date:	10/26/2023 10:33	
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	2.3*		1	ug/L	1	10/27/2023 6:00 AM	001 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	90%		1	%REC		10/27/2023 6:00 AM	001 AG2R1/2

Analy	/tical	Method:EPA	5212
Allan	licai	MELIOU.EFA	0Z4.Z

Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,1,1-Trichloroethane	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,1,2,2-Tetrachloroethane	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,1,2-Trichloroethane	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,1,2-Trichlorotrifluoroethane	0.97	N3	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,1-Dichloroethane	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,1-Dichloroethene	0.75		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,1-Dichloropropene	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,2,3-Trichlorobenzene	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,2,3-Trichloropropane	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,2,4-Trichlorobenzene	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,2,4-Trimethylbenzene	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,2-Dichlorobenzene	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,2-Dichloroethane	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,2-Dichloropropane	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,3,5-Trimethylbenzene	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,3-Dichlorobenzene	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,3-Dichloropropane	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
1,4-Dichlorobenzene	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
2,2-Dichloropropane	<0.50		1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting

limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).

Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

page 1 of 21

Jennifer Aracri Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Laboratory Results

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-14347

Lab No. : 70275259001

Type: Drinking Water Origin: Raw Well Routine

Liberty-NY - Merrick OPS 60 Brooklyn Avenue

TEL: (516) 370-6000 FAX: (516) 886-5526

Merrick, NY 11566

Attn To: Natasha Niola

 Federal ID:
 2902835

 Collected:
 10/24/2023 09:00 AM
 Point
 N-14347

 Received:
 10/24/2023 01:50 PM
 Location
 Seaman Neck #3A

 Collected By
 CLIENT
 CLIENT
 Collected By
 CLIENT

www.pacelabs.com

Sample Comments:

Samples were received on the same day of collection on ice and are above 6 degrees Celcius. Samples were placed on ice by the lab and the cooling process has begun. RUN TO WASTE

2-Chlorotoluene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
4-Chlorotoluene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Benzene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Bromobenzene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Bromochloromethane	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Bromodichloromethane	<0.50	1	ug/L		11/01/2023 4:04 PM	001 VG9C1/2
Bromoform	<0.50	1	ug/L		11/01/2023 4:04 PM	001 VG9C1/2
Bromomethane	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Carbon tetrachloride	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Chlorobenzene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Chlorodifluoromethane	<0.50	N3 1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Chloroethane	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Chloroform	<0.50	1	ug/L		11/01/2023 4:04 PM	001 VG9C1/2
Chloromethane	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Dibromochloromethane	<0.50	1	ug/L		11/01/2023 4:04 PM	001 VG9C1/2
Dibromomethane	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Dichlorodifluoromethane	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Ethylbenzene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Hexachloro-1,3-butadiene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Isopropylbenzene (Cumene)	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Methyl-tert-butyl ether	<0.50	1	ug/L	10	11/01/2023 4:04 PM	001 VG9C1/2
Methylene Chloride	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Styrene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Tetrachloroethene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Toluene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Total Trihalomethanes (Calc.)	<0.50	1	ug/L	80	11/01/2023 4:04 PM	001 VG9C1/2
Trichloroethene	23.6*	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Trichlorofluoromethane	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Vinyl chloride	<0.50	1	ug/L	2	11/01/2023 4:04 PM	001 VG9C1/2
cis-1,2-Dichloroethene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
cis-1,3-Dichloropropene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
m&p-Xylene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
n-Butylbenzene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
n-Propylbenzene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
o-Xylene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
p-Isopropyltoluene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
sec-Butylbenzene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
tert-Butylbenzene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
trans-1,2-Dichloroethene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting

limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).

Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Jennifer Aracri Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Laboratory Results

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests Type: Drinking Water Origin: Raw Well Routine

TEL: (516) 370-6000 FAX: (516) 886-5526 www.pacelabs.com Liberty-NY - Merrick OPS

Lab No. : 70275259001 Client Sample ID.: N-14347

60 Brooklyn Avenue Merrick, NY 11566 Attn To : Natasha Niola

Federal ID : 2902835 Collected : 10/24/2023 09:00 AM Point N-14347 Received : 10/24/2023 01:50 PM Location Seaman Neck #3A Collected By CLIENT

Sample Comments:

Samples were received on the same day of collection on ice and are above 6 degrees Celcius. Samples were placed on ice by the lab and the cooling process has begun. RUN TO WASTE

trans-1,3-Dichloropropene	<0.50	1	ug/L	5	11/01/2023 4:04 PM	001 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	88%	1	%REC		11/01/2023 4:04 PM	001 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	90%	1	%REC		11/01/2023 4:04 PM	001 VG9C1/2

Qualifiers:

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s). Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

page 3 of 21

Jennifer Aracri Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting

limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

575 Broad Hollow Road, Melville, NY 11747 TEL: (516) 370-6000 FAX: (516) 886-5526 www.pacelabs.com

WorkOrder :

70275259

Laboratory Certifications

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: 10478 Primary Accrediting Body Pennsylvania Certification #: 10478 Primary Accrediting Body Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340 Virginia Certification # 460302

e

575 Broad Hollow Road, Melville, NY 11747 TEL: (516) 370-6000 FAX: (516) 886-5526 www.pacelabs.com

WorkOrder :

70275259

Additional Qualifiers

N3 - Accreditation is not offered by the relevant laboratory accrediting body for this parameter.

November 7, 2023

Jennifer Aracri Pace Analytical Services - Long Island, NY 575 Broad Hollow Road Melville, NY 11747

Project Location: 1,4/PFAS/POC/PB/CL 10/24 Client Job Number: Project Number: 70275259 Laboratory Work Order Number: 23J3842

Enclosed are results of analyses for samples as received by the laboratory on October 28, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

and the second

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
23J3842-01	5
Sample Preparation Information	6
QC Data	7
Semivolatile Organic Compounds by - LC/MS-MS	7
B356812	7
Flag/Qualifier Summary	10
Certifications	11
Chain of Custody/Sample Receipt	12

Pace Analytical Services - Long Island, NY 575 Broad Hollow Road Melville, NY 11747 ATTN: Jennifer Aracri

REPORT DATE: 11/7/2023

SUB LAB

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 70275259

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23J3842

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: 1,4/PFAS/POC/PB/CL 10/24

FIELD SAMPLE #

N-14347

LAB ID: MATRIX 23J3842-01 Drinking Water SAMPLE DESCRIPTION

TEST EPA 533

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 533

Qualifications:

В

Analyte is found in the associated laboratory blank as well as in the sample.

Analyte & Samples(s) Qualified:

6:2 Fluorotelomersulfonic acid (6:2FTS A)

B356812-BLK1, B356812-BS1, B356812-BSD1

B-05

Data is not affected by elevated level in laboratory blank since sample(s) result is "Not Detected".

Analyte & Samples(s) Qualified:

6:2 Fluorotelomersulfonic acid (6:2FTS A)

23J3842-01[N-14347]

S-29

Extracted Internal Standard is outside of control limits.

Analyte & Samples(s) Qualified:

M2-8:2FTS

S095770-CCV1, S095770-CCV3

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan S. Kelley

Meghan E. Kelley Reporting Specialist

Project Location: 1,4/PFAS/POC/PB/CL 10/24

Date Received: 10/28/2023

Field Sample #: N-14347

Samp

Samp

Sampled	10/24/2023	09.00
Sampicu.	10/24/2025	09.00

Sample Description:

Work Order: 23J3842

u Sampie #: N-1434/	58	implea:	10/24/2025 09	.00		
ple ID: 23J3842-01						
ple Matrix: Drinking Water						
			Semivolatile (Organic Co	mpounds by - I	LC/MS-MS
			MCL/SMCL			
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Oual

			MCL/SMCL					Date	Date/Time	
Analyte	Results	RL	MA ORSG	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluorobutanesulfonic acid (PFBS)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluoropentanoic acid (PFPeA)	2.1	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluorohexanoic acid (PFHxA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
11Cl-PF3OUdS (F53B Major)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
9Cl-PF3ONS (F53B Minor)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
8:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluorodecanoic acid (PFDA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluorododecanoic acid (PFDoA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
4:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluorohexanesulfonic acid (PFHxS)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
6:2 Fluorotelomersulfonic acid (6:2FTS A)	ND	1.7		ng/L	1	B-05	EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluoropentanesulfonic acid (PFPeS)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluoroundecanoic acid (PFUnA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluoroheptanoic acid (PFHpA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluorooctanoic acid (PFOA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluorooctanesulfonic acid (PFOS)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS
Perfluorononanoic acid (PFNA)	ND	1.7		ng/L	1		EPA 533	10/31/23	11/2/23 11:39	AMS

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
M2-4:2FTS	67.4	50-200		11/2/23 11:39
M2-8:2FTS	122	50-200		11/2/23 11:39
MPFBA	90.6	50-200		11/2/23 11:39
M3HFPO-DA	80.8	50-200		11/2/23 11:39
M6PFDA	94.3	50-200		11/2/23 11:39
M3PFBS	103	50-200		11/2/23 11:39
M7PFUnA	93.9	50-200		11/2/23 11:39
M2-6:2FTS	94.6	50-200		11/2/23 11:39
M5PFPeA	93.9	50-200		11/2/23 11:39
M5PFHxA	93.8	50-200		11/2/23 11:39
M3PFHxS	104	50-200		11/2/23 11:39
M4PFHpA	95.6	50-200		11/2/23 11:39
M8PFOA	99.1	50-200		11/2/23 11:39
M8PFOS	97.0	50-200		11/2/23 11:39
M9PFNA	92.5	50-200		11/2/23 11:39
MPFDoA	86.6	50-200		11/2/23 11:39

Sample Extraction Data

Prep Method:EPA 533 Analytical Method:EPA 533

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23J3842-01 [N-14347]	B356812	288	1.00	10/31/23

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B356812 - EPA 533										
Blank (B356812-BLK1)				Prepared: 10)/31/23 Anal	yzed: 11/02/2	23			
Perfluorobutanoic acid (PFBA)	ND	1.8	ng/L							
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	1.8	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	1.8	ng/L							
11Cl-PF3OUdS (F53B Major)	ND	1.8	ng/L							
Cl-PF3ONS (F53B Minor)	ND	1.8	ng/L							
4,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND	1.8	ng/L							
Hexafluoropropylene oxide dimer acid HFPO-DA)	ND	1.8	ng/L							
2:2 Fluorotelomersulfonic acid (8:2FTS A)	ND	1.8	ng/L							
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L							
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	ND	1.8	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	1.8	ng/L							
:2 Fluorotelomersulfonic acid (4:2FTS A)	ND	1.8	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L							
Perfluoro-4-oxapentanoic acid (PFMPA)	ND	1.8	ng/L							
Perfluoro-5-oxahexanoic acid (PFMBA)	ND	1.8	ng/L							
:2 Fluorotelomersulfonic acid (6:2FTS A)	2.3	1.8	ng/L							В
Perfluoropentanesulfonic acid (PFPeS)	ND	1.8	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L							
Nonafluoro-3,6-dioxaheptanoic acid NFDHA)	ND	1.8	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L							
Perfluorooctanoic acid (PFOA)	ND	1.8	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L							
Perfluorononanoic acid (PFNA)	ND	1.8	ng/L							
Surrogate: M2-4:2FTS	36.0		ng/L	34.7		104	50-200			
Surrogate: M2-8:2FTS	55.8		ng/L	35.5		157	50-200			
Surrogate: MPFBA	41.8		ng/L	37.0		113	50-200			
Surrogate: M3HFPO-DA	37.9		ng/L	37.0		103	50-200			
Surrogate: M6PFDA	41.0		ng/L	37.0		111	50-200			
Surrogate: M3PFBS	38.7		ng/L	34.5		112	50-200			
Surrogate: M7PFUnA	42.0		ng/L	37.0		114	50-200			
Surrogate: M2-6:2FTS	50.4		ng/L	35.2		143	50-200			
Surrogate: M5PFPeA	41.8		ng/L	37.0		113	50-200			
Surrogate: M5PFHxA	40.7		ng/L	37.0		110	50-200			
Surrogate: M3PFHxS	39.4		ng/L	35.1		112	50-200			
Surrogate: M4PFHpA	41.4		ng/L	37.0		112	50-200			
Surrogate: M8PFOA	41.5		ng/L	37.0		112	50-200			
Surrogate: M8PFOS	40.4		ng/L	35.5		114	50-200			
urrogate: M9PFNA	41.0		ng/L	37.0		111	50-200			
Surrogate: MPFDoA	40.9		ng/L	37.0		111	50-200			
LCS (B356812-BS1)				-	0/31/23 Anal	-				
Perfluorobutanoic acid (PFBA)	9.32	1.8	ng/L	9.23		101	70-130			
Perfluorobutanesulfonic acid (PFBS)	7.88	1.8	ng/L	8.17		96.4	70-130			
Perfluoropentanoic acid (PFPeA)	9.35	1.8	ng/L	9.23		101	70-130			
Perfluorohexanoic acid (PFHxA)	9.60	1.8	ng/L	9.23		104	70-130			
1Cl-PF3OUdS (F53B Major)	8.29	1.8	ng/L	8.70		95.3	70-130			
Cl-PF3ONS (F53B Minor)	8.52	1.8	ng/L	8.61		99.0	70-130			

Apolyto	Degult	Reporting	Unita	Spike Level	Source	0/DEC	%REC	רות ק	RPD Limit	Natas
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B356812 - EPA 533										
LCS (B356812-BS1)				-)/31/23 Analy					
i,8-Dioxa-3H-perfluorononanoic acid ADONA)	7.77	1.8	ng/L	8.70		89.3	70-130			
Hexafluoropropylene oxide dimer acid	9.34	1.8	ng/L	9.23		101	70-130			
(HFPO-DA)										
3:2 Fluorotelomersulfonic acid (8:2FTS A)	8.50	1.8	ng/L	8.86		95.9	70-130			
Perfluorodecanoic acid (PFDA)	9.34	1.8	ng/L	9.23		101	70-130			
Perfluorododecanoic acid (PFDoA)	8.68	1.8	ng/L	9.23		94.0	70-130			
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	8.57	1.8	ng/L	8.22		104	70-130			
Perfluoroheptanesulfonic acid (PFHpS)	9.99	1.8	ng/L	8.82		113	70-130			
2 Fluorotelomersulfonic acid (4:2FTS A)	8.45	1.8	ng/L	8.63		97.8	70-130			
Perfluorohexanesulfonic acid (PFHxS)	8.16	1.8	ng/L	8.45		96.6	70-130			
Perfluoro-4-oxapentanoic acid (PFMPA)	8.19	1.8	ng/L	9.23		88.7	70-130			
Perfluoro-5-oxahexanoic acid (PFMBA)	8.87	1.8	ng/L	9.23		96.1	70-130			
5:2 Fluorotelomersulfonic acid (6:2FTS A)	11.2	1.8	ng/L	8.77		128	70-130			В
Perfluoropentanesulfonic acid (PFPeS)	8.05	1.8	ng/L	8.68		92.7	70-130			
Perfluoroundecanoic acid (PFUnA)	9.58	1.8	ng/L	9.23		104	70-130			
Nonafluoro-3,6-dioxaheptanoic acid	8.47	1.8	ng/L	9.23		91.8	70-130			
NFDHA) Perfluoroheptanoic acid (PFHpA)	0.40	1.0	т с/Т	0.22		102	70.120			
	9.49	1.8	ng/L	9.23		103	70-130			
Perfluorooctanoic acid (PFOA)	9.74	1.8	ng/L	9.23		105	70-130			
Perfluorooctanesulfonic acid (PFOS) Perfluorononanoic acid (PFNA)	8.45	1.8 1.8	ng/L ng/L	8.54 9.23		98.9 105	70-130 70-130			
	9.69	1.0	-							
Surrogate: M2-4:2FTS	33.2		ng/L	34.6		95.9	50-200			
Surrogate: M2-8:2FTS	57.4		ng/L	35.5		162	50-200			
Surrogate: MPFBA Surrogate: M3HFPO-DA	40.8 32.4		ng/L ng/L	36.9 36.9		111 87.7	50-200 50-200			
Surrogate: M5HFFO-DA	41.0		ng/L	36.9		111	50-200			
Surrogate: M3PFBS	37.0		ng/L	34.4		108	50-200			
Surrogate: M7PFUnA	40.5		ng/L	36.9		110	50-200			
Surrogate: M2-6:2FTS	46.0		ng/L	35.1		131	50-200			
Surrogate: M5PFPeA	40.9		ng/L	36.9		111	50-200			
Surrogate: M5PFHxA	40.3		ng/L	36.9		109	50-200			
Surrogate: M3PFHxS	37.5		ng/L	35.0		107	50-200			
Surrogate: M4PFHpA	40.5		ng/L	36.9		110	50-200			
Surrogate: M8PFOA	41.3		ng/L	36.9		112	50-200			
Surrogate: M8PFOS	37.9		ng/L	35.4		107	50-200			
Surrogate: M9PFNA	39.8		ng/L	36.9		108	50-200			
Surrogate: MPFDoA	40.2		ng/L	36.9		109	50-200			
LCS Dup (B356812-BSD1)				Prepared: 10)/31/23 Analy	zed: 11/02/2	23			
Perfluorobutanoic acid (PFBA)	9.14	1.8	ng/L	9.25		98.9	70-130	1.94	30	
Perfluorobutanesulfonic acid (PFBS)	7.99	1.8	ng/L	8.18		97.6	70-130	1.39	30	
Perfluoropentanoic acid (PFPeA)	9.25	1.8	ng/L	9.25		100	70-130	1.01	30	
Perfluorohexanoic acid (PFHxA)	9.38	1.8	ng/L	9.25		101	70-130	2.37	30	
1Cl-PF3OUdS (F53B Major)	7.70	1.8	ng/L	8.71		88.4	70-130	7.40	30	
Cl-PF3ONS (F53B Minor)	8.10	1.8	ng/L	8.62		94.0	70-130	5.04	30	
4,8-Dioxa-3H-perfluorononanoic acid ADONA)	7.77	1.8	ng/L	8.71		89.2	70-130	0.00963	30	
Hexafluoropropylene oxide dimer acid HFPO-DA)	7.94	1.8	ng/L	9.25		85.9	70-130	16.2	30	
8:2 Fluorotelomersulfonic acid (8:2FTS A)	8.58	1.8	ng/L	8.88		96.7	70-130	0.991	30	
Perfluorodecanoic acid (PFDA)	9.06	1.8	ng/L	9.25		98.0	70-130	3.06	30	
Perfluorododecanoic acid (PFDoA)	9.00	1.8	ng/L	9.25		97.3	70-130	3.54	30	

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B356812 - EPA 533										
LCS Dup (B356812-BSD1)				Prepared: 10)/31/23 Anal	yzed: 11/02/2	23			
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	8.45	1.8	ng/L	8.23		103	70-130	1.33	30	
Perfluoroheptanesulfonic acid (PFHpS)	9.98	1.8	ng/L	8.83		113	70-130	0.154	30	
4:2 Fluorotelomersulfonic acid (4:2FTS A)	8.30	1.8	ng/L	8.65		96.0	70-130	1.76	30	
Perfluorohexanesulfonic acid (PFHxS)	8.27	1.8	ng/L	8.46		97.7	70-130	1.31	30	
Perfluoro-4-oxapentanoic acid (PFMPA)	8.04	1.8	ng/L	9.25		87.0	70-130	1.84	30	
Perfluoro-5-oxahexanoic acid (PFMBA)	8.69	1.8	ng/L	9.25		94.0	70-130	2.03	30	
6:2 Fluorotelomersulfonic acid (6:2FTS A)	11.2	1.8	ng/L	8.79		127	70-130	0.399	30	В
Perfluoropentanesulfonic acid (PFPeS)	7.93	1.8	ng/L	8.69		91.2	70-130	1.55	30	
Perfluoroundecanoic acid (PFUnA)	9.17	1.8	ng/L	9.25		99.1	70-130	4.41	30	
Nonafluoro-3,6-dioxaheptanoic acid NFDHA)	8.39	1.8	ng/L	9.25		90.7	70-130	1.05	30	
Perfluoroheptanoic acid (PFHpA)	9.45	1.8	ng/L	9.25		102	70-130	0.426	30	
Perfluorooctanoic acid (PFOA)	9.09	1.8	ng/L	9.25		98.3	70-130	6.90	30	
Perfluorooctanesulfonic acid (PFOS)	7.93	1.8	ng/L	8.55		92.7	70-130	6.35	30	
Perfluorononanoic acid (PFNA)	9.91	1.8	ng/L	9.25		107	70-130	2.31	30	
Surrogate: M2-4:2FTS	36.5		ng/L	34.7		105	50-200			
Surrogate: M2-8:2FTS	54.9		ng/L	35.5		155	50-200			
Surrogate: MPFBA	41.4		ng/L	37.0		112	50-200			
Surrogate: M3HFPO-DA	36.4		ng/L	37.0		98.5	50-200			
Surrogate: M6PFDA	40.4		ng/L	37.0		109	50-200			
Surrogate: M3PFBS	38.1		ng/L	34.5		111	50-200			
Surrogate: M7PFUnA	41.6		ng/L	37.0		112	50-200			
Surrogate: M2-6:2FTS	47.9		ng/L	35.2		136	50-200			
Surrogate: M5PFPeA	41.4		ng/L	37.0		112	50-200			
Surrogate: M5PFHxA	40.2		ng/L	37.0		109	50-200			
Surrogate: M3PFHxS	38.9		ng/L	35.1		111	50-200			
Surrogate: M4PFHpA	40.6		ng/L	37.0		110	50-200			
Surrogate: M8PFOA	41.3		ng/L	37.0		112	50-200			
Surrogate: M8PFOS	39.5		ng/L	35.5		111	50-200			
Surrogate: M9PFNA	40.2		ng/L	37.0		109	50-200			
Surrogate: MPFDoA	40.2		ng/L	37.0		109	50-200			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
Ť	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
В	Analyte is found in the associated laboratory blank as well as in the sample.
B-05	Data is not affected by elevated level in laboratory blank since sample(s) result is "Not Detected".
S-29	Extracted Internal Standard is outside of control limits.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 533 in Drinking Water	
Perfluorobutanoic acid (PFBA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorobutanesulfonic acid (PFBS)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoropentanoic acid (PFPeA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorohexanoic acid (PFHxA)	NH,NY,VT-DW,ME,NJ,PA,CT
11Cl-PF3OUdS (F53B Major)	NH,NY,VT-DW,ME,NJ,PA,CT
9CI-PF3ONS (F53B Minor)	NH,NY,VT-DW,ME,NJ,PA,CT
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NH,NY,VT-DW,ME,NJ,PA,CT
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH,NY,VT-DW,ME,NJ,PA,CT
8:2 Fluorotelomersulfonic acid (8:2FTS A)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorodecanoic acid (PFDA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorododecanoic acid (PFDoA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoroheptanesulfonic acid (PFHpS)	NH,NY,VT-DW,ME,NJ,PA,CT
4:2 Fluorotelomersulfonic acid (4:2FTS A)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorohexanesulfonic acid (PFHxS)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoro-4-oxapentanoic acid (PFMPA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoro-5-oxahexanoic acid (PFMBA)	NH,NY,VT-DW,ME,NJ,PA,CT
6:2 Fluorotelomersulfonic acid (6:2FTS A)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoropentanesulfonic acid (PFPeS)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoroundecanoic acid (PFUnA)	NH,NY,VT-DW,ME,NJ,PA,CT
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluoroheptanoic acid (PFHpA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorooctanoic acid (PFOA)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorooctanesulfonic acid (PFOS)	NH,NY,VT-DW,ME,NJ,PA,CT
Perfluorononanoic acid (PFNA)	NH,NY,VT-DW,ME,NJ,PA,CT

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
CT	Connecticut Department of Public Health	PH-0821	12/31/2024
NY	New York State Department of Health	10899 NELAP	04/1/2024
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2024
NJ	New Jersey DEP	MA007 NELAP	06/30/2024
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2024
ME	State of Maine	MA00100	06/9/2025
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2024

Internal Transfer Chain of Custody	r Chain c	of Custoc	V						ς
		Rush Multiplier	ultiplierX		State Of		[23J3842	Pace
Workorder: 70275259	Workorder Name:		Samples Pre-Logged into eCOC 1,4D/PFAS/POC/PB/CL 10/24	into eCOC CL 10/24	Cert. Needed: Owner Receive	Cert. Needed: X Yes Owner Received Date:	s	10/24/2023 Results Recrinected Bur	
Report To		Subcontra	ct To					Analysis	
Jennifer Aracri Pace Analytical Melville 575 Broad Hollow Road Melville, NY 11747 Phone 516-370-6016		Pace 39 Sp East L Phone	Pace New England 39 Spruce St. East Longmeadow, MA 01028 Phone (413)525-2332	A 01028					
						55 by 533			
					Preserved Containers	ТТ			
Item Sample ID	Sample Collect Type Date/Ti	Collect Date/Time	Lab ID	Other Other					
1 N-14347	PS	10/24/2023 09:00	70275259001	Drinking 1		×			
3									
4 (
Tranefore Dolocord D.		-			•			Comments	
		10 ate/lime	Received By	NIX X	MIn/97	Date/Time	篇25 Compound List	st	
	ALAN O	127.2200	0 0 10 × 10	here	ireenoci 2:	- <u>2</u> ਸ਼			
Color Tomore Day	4 Fréen	1142		V ZO	8	<u>Kariz 0130</u>			
	tcelpt	C I Cus	Custody Seal Y	or	Received	Received on Ice Y	or N	Samples Intact	ict Y or N
In order to maintain client contidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is poinsivered complete as is since this information is available in the owner laboratory	contidentiality, onsidered con	location/name nplete as is sinc	of the samplin se this informat	ig site, samp tion is availat	ler's name and s ble in the owner	ignature may lahoratom	not be provided	on this COC docun	nent.
0660 10128(23 0445 10/28/23	Ŕ	10128123	5425				07100		
3 3		10/28/23	3 06:36	M	Le Mal v	10.28.23	J.4°C		
					he has				

• •

FMT-ALL-C-002rev.00 24March2009

Friday, October 27, 2023 12:59:15 PM

24March2009 Page 1 of 1

Pace MAUTER SINCES

DC#_Title: ENV-FRM-ELON-0001 v07_Sample Receiving Checklist

Effective Date: 07/13/2023

Log In Back-Sheet

Client Pace - Melville
Project NIA
MCP/RCP Required N \ A
Deliverable Package Requirement NIA
Location 1.4D/PFAS/POC/PB/CL 10124
PWSID# (When Applicable) NIA
Arrival Method:
Courier 🛛 Fed Ex 🗖 Walk In 🗖 Other
Received By / Date / Time $AAM / 10 - 28 - 23 / 0936$
Back-Sheet By / Date / Time AAM / 10 - 28 - 23 / 1121
Temperature Method TEMP. (500 # 5
Temp $\sqrt{6^{\circ} C}$ Actual Temperature $2.9^{\circ} C$
Rush Samples: Yes / Notify
Short Hold: Yes / No Notify
Notes regarding Samples/COC outside of SOP:
Notes regarding Samples/COC outside of SOP:
Notes regarding Samples/COC outside of SOP:

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

	Irue	False						
Received on Ice	D/							
Received in Cooler	G							
Custody Seal: DATE TIME								
COC Relinguished								
COC/Samples Labels Agree								
All Samples in Good Condition								
Samples Received within Holding Tim								
Is there enough Volume								
Proper Media/Container Used	Q'							
Splitting Samples Required								
MS/MSD		D						
Trip Blanks		D						
Lab to Filters		Ø						
COC Legible	I							
COC Included: (Check all included)								
	ampler Name							
Project 12 milds Co	ollection Date/Time							
All Samples Proper pH: N/A								
Additional Contai	ner Notes	1						
Note: West Virginia requires all sa	mples to have their							
temperature taken. Note any outliers.								

Qualtrax ID: 120836

Page 1 of 2

Г						r	.	·	······				,				_	-					
							 														Γ	\square	
	r/F																						
	Other / Fill in																						
	0																		T				
-		ol/Bact	_													T							
		etefiusi			-+										Τ								
	Vials	.l. Water		$ \rightarrow $																		\neg	
	VOA Vials	HOəv	<u>v</u>	-+												T							
	>	ICI		-																			
		Jupreserved																			1	1	
		JaOH/Zinc													Τ					1		1	
		ətstəck muinomm	A 4	2	-															1	T	+	
		HOev			$- \downarrow$												Τ	Τ			1		
1	250ml	Vitric															Τ	Т	Τ		T		
Li I		Sulfuric																					
Plastics	1 Liter 500mL	emzinT	_																Τ	T	T	T	
		Unpreserved		_																Τ	T		
		Sulfuric	-																		Т	Т	
		Unpreserved			_																Τ		
		Sulfuric	-																			Τ	
		Unpreserved	-		+	-																	
1	100mL	Unpreserved																			Τ	Τ	1
										+-	+	+	╋	+-		-							
ers	250mL	Phosphoric							1	+	+	+	+-	1-	+	+	+	╉		╋	+-	+	-
Ambers	~	Sulfuric			\top	\uparrow	1	+	1-	1-	1-	+	+	+	┼─	+-	+		+	╋	+-	+	-
		Sulturic		1	\top	\top	1-	+	1-	╈	1-	+	╈	1-	┼─	1-	+	+	+	╋	┿	+	+
	1 Lifer	нсг		Τ	1	T	1-	+	1	\mathbf{T}	1-	1-		\uparrow		1	+	+	+	╋	+-	+	+
		Unpreserved		T	1	1		1		\mathbf{t}	+	+-	1		┢──	1	╉──	+	+-	┢	+	╉─	$\left\{ \right.$
5	(ar)	2oz Amb/Clear			Γ		1	\mathbf{T}	\mathbf{T}	\uparrow	1	1	+		 	+	+	1	+	┼──	+	+	ł
Soils Jars	(Grcle Amb/Cle	heelO\dmA so4				1	1	1		1	1	1	1-			\mathbf{f}	<u> </u>	+	┢─		+-	╋	ł
Soil	e A	169ID\dmA so8							[<u> </u>		1				†	 	1		┢─	+	╉──	ł
	<u>e</u>	16912/dmA zo 31							 	 	†			+-	╉──	ł							
	eldme2 <u>1012 200 200 200 200 200 200 200 200 200</u>									14	15	19	11	20	5	20							
	ſ						L	l												Ľ	Ľ		I
	ŀ										202,	/ɛː/	CO :9	teG a	vita	Effe	193	442 3 5 19324	ताला ।				
		Isilasan Briv	1934	9) a	udu	igo"	-	100	0.11	<u></u>					.			əje,					
	L	DC#_Title: ENV-FRM-ELON-0001 v07_Sample Receiving Checklist								Da	0												

Page 2 of 2

Qualifiex ID: 120836

Ш	RUN TO SYSTEM	Treatment Types AST - Air Stripper GAC - Granular Activated Charcoal N - Nitrate Removal Plant FE - Iron Removal Plant O - Other	Lab No.		2		de la companya de la comp					
A WELL OFF LINE		Origin DIrea D stributionIrea ASTD- Distribution RWAST ASTRW- Raw Well GACAST ASTTW- Trank MWN FE MWMW- Monitoring Well C0I- Influent E0	Analysis	1,4 Diaxane	\$FFC nethed 533	PPOLIDE	@ Mall: cm Elea	D Chlorides				
Sample Request Form PUBLIC WATER SUPPLIER	Eucl 1-12, 13.5 64 0 - 12, 13.5 9 0 3)	Purpose RO - Routine RE - Resample S - Special	Field Readings Cl ₂ pH/Temp	12:3								
Sample Re PUBLIC WAT	Collected By: Accepted By: Cooler Temp: 12 -4	Sample Types PW - Potable Water GW - Groundwater SW - Surface Water WW - Waste Water AQ - Aqueous S - Soil	Origin Treatment Purpose	RW / RI								
5259 	And Merrick	Ny listel	Location	Sciaman Nick3	N-14347	-						
027	7027:	the stand	Sample Type	CMS								
WO#:70275259	Client Info: Name or Code:	Address: Address: Address: Address: Athriation Athriatio Athriation Athriation Athriatio	aged Collected:	007.5 H7/10/ of 20 of 2	21						Remarks:	

Effective Date: 5/23/2023	WO#:70275259
Client Name:	PM: JSA Due Date: 11/02/23 Project # CLIENT: LIWC
Courier:] Fed Ex] UPS] USPS Client] Commercial]	Pace 🗋 Other
Tracking #:	
Custody Seal on Cooler/Box Present: □Yes PNo Seals intact Packing Material: □Bubble Wrap □ Bubble Bags □ Ziploc PN Thermometer Used: Correction Factor: - Q. 3	None Other Type of Ice: Wet Blue None
Cooler Temperature("C): 12.9 Cooler Temperature Correct	ed(<u>°C): [3 -2_</u> Date/Time 5035A kits placed in freezer
Temp should be above freezing to 6.0°C USDA Regulated Soil () N/A, water sample)	
Did samples originate in a guarantine zone within the United States:	AL, AR, CA, FL, GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, p)? □ Yes □ No
Did samples orignate from a foreign source inc	luding Hawaii and Puerto Rico)? 🔲 Yes 🗌 No
If Yes to either question, fill out a Regulated Soil Checklist (E	ENV-FRM-MELV-0076) and include with SCUR/COC paperwork.
Da	te and Initials of person examining contents: $AS 101570$
	COMMENTS:
Chain of Custody Present: DY96 DNO 1.	
Chain of Custody Filled Out: Dies DNo 2.	
Chain of Custody Relinquished: DVes DNo 3.	
Sampler Name & Signature on COC: pres oNo oN/A 4.	
Samples Arrived within Hold Time: Dies oNo 5.	
Short Hold Time Analysis (<72hr): DYes 240 6.	
Rush Turn Around Time Requested DYes 040 7.	
Sufficient Volume: (Triple volume Des ONo 8.	
provided for MS/MSD) Correct Containers Used:resNo9.	
-Pace Containers Used: Dies oNo	
Containers Intact: DYES DNo 10.	
Filtered volume received for DYes No 11. Dissolved tests	
Sample Labels match COC: Pres No 12.	
-Includes date/lime/ID/Analysi: Matrix: SL M OIL OTHER	te and Initials of person checking preservation:
0	
	mple
All containers needing preservation are found to be in compliance with method recommendation? (HNO ₃ , H ₂ SO ₄ , HCI, NaOH>9 Sulfide, DYSS DNO DN/A	#
NAOH>12 Cyanide)	
Exceptions; VOA, Coliform, TOC/DOC, Oil and Grease,	al when completed; Lot # of added Date/Time preservative added:
DRUBUTS (Water)	preservative;
Per Method, VOA pH is checked after analysis Samples checked for dechlorination:YesNoN/A14.	
KI starch test strips Lot #	
	sitive for Res. Chlorine? Y N
SM 4500 CN samples checked for sul DYes DNo DN/A 15.	
	sitive for Sulfide? Y N
Headspace in VOA Vials (>6mm): DYes 🔊 DN/A 16.	
Trip Blank Present: DYes No GN/A 17.	
Trip Blank Custody Seals PresentYesNoN/A	
Client Notification/ Resolution: Fie	Id Data Required? Y / N
Person Contacled:	Date/Time:
Comments/ Resolution:	

* PM (Project Manager) review is documented electronically in LIMS.